IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v15y2023i3d10.1007_s12469-023-00330-x.html
   My bibliography  Save this article

Unravelling commuters' modal splitting behaviour in mass transportation service operation

Author

Listed:
  • Angela Hsiang Ling Chen

    (Chung Yuan Christian University)

  • Kuangnen Cheng

    (Marist College)

  • Wan-Ju Chang

    (Chung Yuan Christian University)

Abstract

One important factor in determining whether commuters will use public transport is spatial accessibility rooted in the first-mile problem. This study explores commuter behaviour in terms of how they utilize bike-sharing to manage the first-mile accessibility of a public transportation station. Historical data from Taipei Metro smart cards were analyzed using RFM (recency, frequency, and monetary) segmentation models to identify commuter segments. This study reveals two significant findings: comprehensive spatiotemporal characteristics and homogeneous behavioural patterns are derived from clustering algorithms. The city's penetration pricing strategy for bike-sharing motivates modal splitting transfer between bike-sharing and transit (MSTBT). In addition, we observed a supplementary and utilitarian relationship between bike-sharing and the metro. A convenient transportation network improves first-mile accessibility, thus the frequency of MSTBT usage is a key metric for measuring engagement. The findings provide a useful reference for urban planners promoting the design and development of sustainable transportation systems.

Suggested Citation

  • Angela Hsiang Ling Chen & Kuangnen Cheng & Wan-Ju Chang, 2023. "Unravelling commuters' modal splitting behaviour in mass transportation service operation," Public Transport, Springer, vol. 15(3), pages 813-838, October.
  • Handle: RePEc:spr:pubtra:v:15:y:2023:i:3:d:10.1007_s12469-023-00330-x
    DOI: 10.1007/s12469-023-00330-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-023-00330-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-023-00330-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elisie Kåresdotter & Jessica Page & Ulla Mörtberg & Helena Näsström & Zahra Kalantari, 2022. "First Mile/Last Mile Problems in Smart and Sustainable Cities: A Case Study in Stockholm County," Journal of Urban Technology, Taylor & Francis Journals, vol. 29(2), pages 115-137, April.
    2. Jiménez, Pilar & Nogal, María & Caulfield, Brian & Pilla, Francesco, 2016. "Perceptually important points of mobility patterns to characterise bike sharing systems: The Dublin case," Journal of Transport Geography, Elsevier, vol. 54(C), pages 228-239.
    3. Lithiya Paul & T. Radha Ramanan, 2019. "An RFM and CLV analysis for customer retention and customer relationship management of a logistics firm," International Journal of Applied Management Science, Inderscience Enterprises Ltd, vol. 11(4), pages 333-351.
    4. Tamás Mátrai & János Tóth, 2020. "Cluster Analysis of Public Bike Sharing Systems for Categorization," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    5. Yannick Cornet & Giuseppe Lugano & Christina Georgouli & Dimitris Milakis, 2022. "Worthwhile travel time: a conceptual framework of the perceived value of enjoyment, productivity and fitness while travelling," Transport Reviews, Taylor & Francis Journals, vol. 42(5), pages 580-603, September.
    6. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    7. Yang Liu & Yanjie Ji & Tao Feng & Zhuangbin Shi, 2020. "Use Frequency of Metro–Bikeshare Integration: Evidence from Nanjing, China," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    8. Gustavo Romanillos & Martin Zaltz Austwick & Dick Ettema & Joost De Kruijf, 2016. "Big Data and Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 114-133, January.
    9. Krygsman, Stephan & Dijst, Martin & Arentze, Theo, 2004. "Multimodal public transport: an analysis of travel time elements and the interconnectivity ratio," Transport Policy, Elsevier, vol. 11(3), pages 265-275, July.
    10. Elliot Fishman & Simon Washington & Narelle Haworth, 2013. "Bike Share: A Synthesis of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 148-165, March.
    11. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    12. Martin, Elliot W. & Shaheen, Susan A., 2014. "Evaluating public transit modal shift dynamics in response to bikesharing: a tale of two U.S. cities," Journal of Transport Geography, Elsevier, vol. 41(C), pages 315-324.
    13. Haitao Jin & Fengjun Jin & Jiao’e Wang & Wei Sun & Libo Dong, 2019. "Competition and Cooperation between Shared Bicycles and Public Transit: A Case Study of Beijing," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
    14. Martin, Elliot PhD & Shaheen, Susan PhD, 2014. "Evaluating Public Transit Modal Shift Dynamics In Response to Bikesharing: A Tale of Two U.S. Cities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6x29n876, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    2. Dehdari Ebrahimi, Zhila & Momenitabar, Mohsen & Nasri, Arefeh A. & Mattson, Jeremy, 2022. "Using a GIS-based spatial approach to determine the optimal locations of bikeshare stations: The case of Washington D.C," Transport Policy, Elsevier, vol. 127(C), pages 48-60.
    3. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    4. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    5. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    6. Kong, Hui & Chao, Hao & Fu, Wenyan & Lin, Diao & Zhang, Yongping, 2025. "Relationship between shared micromobility and public transit: The differences between shared bikes and shared E-bikes," Journal of Transport Geography, Elsevier, vol. 123(C).
    7. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    8. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    9. Xiaozhou Ye, 2022. "Bike-Sharing Adoption in Cross-National Contexts: An Empirical Research on the Factors Affecting Users’ Intentions," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    10. Wang, Ruoxuan & Wu, Jianping & Qi, Geqi, 2022. "Exploring regional sustainable commuting patterns based on dockless bike-sharing data and POI data," Journal of Transport Geography, Elsevier, vol. 102(C).
    11. Lv, Huitao & Li, Haojie & Chen, Yanlu & Feng, Tao, 2023. "An origin-destination level analysis on the competitiveness of bike-sharing to underground using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 113(C).
    12. Liu, Xinyu & Yu, Jie & Zhao, Jing & Schneider, Robert J., 2025. "Bikeshare impacts on bus ridership: Unraveling the rail proximity effect," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    13. Kim, Kyoungok, 2023. "Investigation of modal integration of bike-sharing and public transit in Seoul for the holders of 365-day passes," Journal of Transport Geography, Elsevier, vol. 106(C).
    14. Xie, Xiao-Feng & Wang, Zunjing Jenipher, 2018. "Examining travel patterns and characteristics in a bikesharing network and implications for data-driven decision supports: Case study in the Washington DC area," Journal of Transport Geography, Elsevier, vol. 71(C), pages 84-102.
    15. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    16. Hong Lang & Shiwen Zhang & Kexin Fang & Yingying Xing & Qingwen Xue, 2023. "What Is the Impact of a Dockless Bike-Sharing System on Urban Public Transit Ridership: A View from Travel Distances," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    17. Cao, Zhejing & Zhang, Xiaohu & Chua, Kelman & Yu, Honghai & Zhao, Jinhua, 2021. "E-scooter sharing to serve short-distance transit trips: A Singapore case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 177-196.
    18. Hamilton, Timothy L. & Wichman, Casey J., 2018. "Bicycle infrastructure and traffic congestion: Evidence from DC's Capital Bikeshare," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 72-93.
    19. Xinwei Ma & Shuai Zhang & Yuchuan Jin & Minqing Zhu & Yufei Yuan, 2021. "Identification of Metro-Bikeshare Transfer Trip Chains by Matching Docked Bikeshare and Metro Smartcards," Energies, MDPI, vol. 15(1), pages 1-19, December.
    20. Pengfei Lin & Jiancheng Weng & Quan Liang & Dimitrios Alivanistos & Siyong Ma, 2020. "Impact of Weather Conditions and Built Environment on Public Bikesharing Trips in Beijing," Networks and Spatial Economics, Springer, vol. 20(1), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:15:y:2023:i:3:d:10.1007_s12469-023-00330-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.