IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i4d10.1007_s11336-022-09896-0.html
   My bibliography  Save this article

Diagnosing and Handling Common Violations of Missing at Random

Author

Listed:
  • Feng Ji

    (University of California, Berkeley University of Toronto)

  • Sophia Rabe-Hesketh

    (University of California, Berkeley)

  • Anders Skrondal

    (Norwegian Institute of Public Health
    University of Oslo
    University of California, Berkeley)

Abstract

Ignorable likelihood (IL) approaches are often used to handle missing data when estimating a multivariate model, such as a structural equation model. In this case, the likelihood is based on all available data, and no model is specified for the missing data mechanism. Inference proceeds via maximum likelihood or Bayesian methods, including multiple imputation without auxiliary variables. Such IL approaches are valid under a missing at random (MAR) assumption. Rabe-Hesketh and Skrondal (Ignoring non-ignorable missingness. Presidential Address at the International Meeting of the Psychometric Society, Beijing, China, 2015; Psychometrika, 2023) consider a violation of MAR where a variable A can affect missingness of another variable B also when A is not observed. They show that this case can be handled by discarding more data before proceeding with IL approaches. This data-deletion approach is similar to the sequential estimation of Mohan et al. (in: Advances in neural information processing systems, 2013) based on their ordered factorization theorem but is preferable for parametric models. Which kind of data-deletion or ordered factorization to employ depends on the nature of the MAR violation. In this article, we therefore propose two diagnostic tests, a likelihood-ratio test for a heteroscedastic regression model and a kernel conditional independence test. We also develop a test-based estimator that first uses diagnostic tests to determine which MAR violation appears to be present and then proceeds with the corresponding data-deletion estimator. Simulations show that the test-based estimator outperforms IL when the missing data problem is severe and performs similarly otherwise.

Suggested Citation

  • Feng Ji & Sophia Rabe-Hesketh & Anders Skrondal, 2023. "Diagnosing and Handling Common Violations of Missing at Random," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1123-1143, December.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-022-09896-0
    DOI: 10.1007/s11336-022-09896-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-022-09896-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-022-09896-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-022-09896-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.