IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v46y2024i1d10.1007_s00291-023-00716-0.html
   My bibliography  Save this article

One-stage product-line design heuristics: an empirical comparison

Author

Listed:
  • Daniel Baier

    (University of Bayreuth)

  • Sascha Voekler

    (University of Bayreuth
    Brandenburg University of Technology)

Abstract

Selecting or adjusting attribute-levels (e.g. components, equipments, flavors, ingredients, prices, tastes) for multiple new and/or status quo products is an important task for a focal firm in a dynamic market. Usually, the goal is to maximize expected overall buyers’ welfare based on consumers’ partworths or expected revenue, market share, and profit under given assumptions. However, in general, these so-called product-line design problems cannot be solved exactly in acceptable computing time. Therefore, heuristics have been proposed: Two-stage heuristics select promising candidates for single products and evaluate sets of them as product-lines. One-stage heuristics directly search for multiple attribute-level combinations. In this paper, Ant Colony Optimization, Genetic Algorithms, Particle Swarm Optimization, Simulated Annealing and, firstly, Cluster-based Genetic Algorithm and Max-Min Ant Systems are applied to 78 small- to large-size product-line design problem instances. In contrast to former comparisons, data is generated according to a large sample of commercial conjoint analysis applications (n = 2,089). The results are promising: The firstly applied heuristics outperform the established ones.

Suggested Citation

  • Daniel Baier & Sascha Voekler, 2024. "One-stage product-line design heuristics: an empirical comparison," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(1), pages 73-107, March.
  • Handle: RePEc:spr:orspec:v:46:y:2024:i:1:d:10.1007_s00291-023-00716-0
    DOI: 10.1007/s00291-023-00716-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-023-00716-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-023-00716-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory Dobson & Shlomo Kalish, 1988. "Positioning and Pricing a Product Line," Marketing Science, INFORMS, vol. 7(2), pages 107-125.
    2. Vermeulen, Bart & Goos, Peter & Vandebroek, Martina, 2008. "Models and optimal designs for conjoint choice experiments including a no-choice option," International Journal of Research in Marketing, Elsevier, vol. 25(2), pages 94-103.
    3. Albritton, M. David & McMullen, Patrick R., 2007. "Optimal product design using a colony of virtual ants," European Journal of Operational Research, Elsevier, vol. 176(1), pages 498-520, January.
    4. Allan D. Shocker & V. Srinivasan, 1974. "A Consumer-Based Methodology for the Identification of New Product Ideas," Management Science, INFORMS, vol. 20(6), pages 921-937, February.
    5. Rajeev Kohli & Ramesh Krishnamurti, 1987. "A Heuristic Approach to Product Design," Management Science, INFORMS, vol. 33(12), pages 1523-1533, December.
    6. Alexouda, Georgia & Paparrizos, Konstantinos, 2001. "A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study," European Journal of Operational Research, Elsevier, vol. 134(1), pages 165-178, October.
    7. G. E. Fruchter & A. Fligler & R. S. Winer, 2006. "Optimal Product Line Design: Genetic Algorithm Approach to Mitigate Cannibalization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 227-244, November.
    8. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    9. Green, Paul E. & Krieger, Abba M., 1989. "Recent contributions to optimal product positioning and buyer segmentation," European Journal of Operational Research, Elsevier, vol. 41(2), pages 127-141, July.
    10. Leyuan Shi & Sigurdur Ólafsson & Qun Chen, 2001. "An Optimization Framework for Product Design," Management Science, INFORMS, vol. 47(12), pages 1681-1692, December.
    11. Tsafarakis, Stelios & Marinakis, Yannis & Matsatsinis, Nikolaos, 2011. "Particle swarm optimization for optimal product line design," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 13-22.
    12. Wang, Xinfang (Jocelyn) & Curry, David J., 2012. "A robust approach to the share-of-choice product design problem," Omega, Elsevier, vol. 40(6), pages 818-826.
    13. Roberts, John H. & Kayande, Ujwal & Stremersch, Stefan, 2014. "From academic research to marketing practice: Some further thoughts," International Journal of Research in Marketing, Elsevier, vol. 31(2), pages 144-146.
    14. Jeffrey D. Camm & James J. Cochran & David J. Curry & Sriram Kannan, 2006. "Conjoint Optimization: An Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem," Management Science, INFORMS, vol. 52(3), pages 435-447, March.
    15. Xinfang (Jocelyn) Wang & Jeffrey D. Camm & David J. Curry, 2009. "A Branch-and-Price Approach to the Share-of-Choice Product Line Design Problem," Management Science, INFORMS, vol. 55(10), pages 1718-1728, October.
    16. L S Thakur & S K Nair & K-W Wen & P Tarasewich, 2000. "A new model and solution method for product line design with pricing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(1), pages 90-101, January.
    17. P. V. (Sundar) Balakrishnan & Varghese S. Jacob, 1996. "Genetic Algorithms for Product Design," Management Science, INFORMS, vol. 42(8), pages 1105-1117, August.
    18. Kyle D. Chen & Warren H. Hausman, 2000. "Technical Note: Mathematical Properties of the Optimal Product Line Selection Problem Using Choice-Based Conjoint Analysis," Management Science, INFORMS, vol. 46(2), pages 327-332, February.
    19. Kohli, Rajeev & Krishnamurti, Ramesh, 1989. "Optimal product design using conjoint analysis: Computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 40(2), pages 186-195, May.
    20. Tarasewich, Peter & McMullen, Patrick R., 2001. "A pruning heuristic for use with multisource product design," European Journal of Operational Research, Elsevier, vol. 128(1), pages 58-73, January.
    21. Albers, Sonke & Brockhoff, Klaus, 1977. "A procedure for new product positioning in an attribute space," European Journal of Operational Research, Elsevier, vol. 1(4), pages 230-238, July.
    22. Suresh K. Nair & Lakshman S. Thakur & Kuang-Wei Wen, 1995. "Near Optimal Solutions for Product Line Design and Selection: Beam Search Heuristics," Management Science, INFORMS, vol. 41(5), pages 767-785, May.
    23. Hein, Maren & Goeken, Nils & Kurz, Peter & Steiner, Winfried J., 2022. "Using Hierarchical Bayes draws for improving shares of choice predictions in conjoint simulations: A study based on conjoint choice data," European Journal of Operational Research, Elsevier, vol. 297(2), pages 630-651.
    24. Paul E. Green & Abba M. Krieger, 1992. "An Application of a Product Positioning Model to Pharmaceutical Products," Marketing Science, INFORMS, vol. 11(2), pages 117-132.
    25. Rajeev Kohli & R. Sukumar, 1990. "Heuristics for Product-Line Design Using Conjoint Analysis," Management Science, INFORMS, vol. 36(12), pages 1464-1478, December.
    26. Dimitris Bertsimas & Velibor V. Mišić, 2019. "Exact First-Choice Product Line Optimization," Operations Research, INFORMS, vol. 67(3), pages 651-670, May.
    27. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    28. Gregory Dobson & Shlomo Kalish, 1993. "Heuristics for Pricing and Positioning a Product-Line Using Conjoint and Cost Data," Management Science, INFORMS, vol. 39(2), pages 160-175, February.
    29. Steven M. Shugan & V. Balachandran, 1977. "A Mathematical Programming Model for Optimal Product Line Structuring," Discussion Papers 265, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    30. Roberts, John H. & Kayande, Ujwal & Stremersch, Stefan, 2014. "From academic research to marketing practice: Exploring the marketing science value chain," International Journal of Research in Marketing, Elsevier, vol. 31(2), pages 127-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan Wang & Genaro Gutierrez, 2022. "Robust Product Line Design by Protecting the Downside While Minding the Upside," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 194-217, January.
    2. Albritton, M. David & McMullen, Patrick R., 2007. "Optimal product design using a colony of virtual ants," European Journal of Operational Research, Elsevier, vol. 176(1), pages 498-520, January.
    3. Winfried J. Steiner & Harald Hruschka, 2002. "Produktliniengestaltung mit Genetischen Algorithmen," Schmalenbach Journal of Business Research, Springer, vol. 54(7), pages 575-601, November.
    4. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    5. Winfried Steiner & Harald Hruschka, 2002. "A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data," Review of Marketing Science Working Papers 1-4-1003, Berkeley Electronic Press.
    6. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    7. Xinfang (Jocelyn) Wang & Jeffrey D. Camm & David J. Curry, 2009. "A Branch-and-Price Approach to the Share-of-Choice Product Line Design Problem," Management Science, INFORMS, vol. 55(10), pages 1718-1728, October.
    8. Pantourakis, Michail & Tsafarakis, Stelios & Zervoudakis, Konstantinos & Altsitsiadis, Efthymios & Andronikidis, Andreas & Ntamadaki, Vasiliki, 2022. "Clonal selection algorithms for optimal product line design: A comparative study," European Journal of Operational Research, Elsevier, vol. 298(2), pages 585-595.
    9. Baier, Daniel & Gaul, Wolfgang, 1998. "Optimal product positioning based on paired comparison data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 365-392, November.
    10. G. E. Fruchter & A. Fligler & R. S. Winer, 2006. "Optimal Product Line Design: Genetic Algorithm Approach to Mitigate Cannibalization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 227-244, November.
    11. Maoqi Liu & Li Zheng & Changchun Liu & Zhi‐Hai Zhang, 2023. "From share of choice to buyers' welfare maximization: Bridging the gap through distributionally robust optimization," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1205-1222, April.
    12. Tsafarakis, Stelios & Zervoudakis, Konstantinos & Andronikidis, Andreas & Altsitsiadis, Efthymios, 2020. "Fuzzy self-tuning differential evolution for optimal product line design," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1161-1169.
    13. Leyuan Shi & Sigurdur Ólafsson & Qun Chen, 2001. "An Optimization Framework for Product Design," Management Science, INFORMS, vol. 47(12), pages 1681-1692, December.
    14. Wang, Xinfang (Jocelyn) & Curry, David J., 2012. "A robust approach to the share-of-choice product design problem," Omega, Elsevier, vol. 40(6), pages 818-826.
    15. Tsafarakis, Stelios & Marinakis, Yannis & Matsatsinis, Nikolaos, 2011. "Particle swarm optimization for optimal product line design," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 13-22.
    16. Stelios Tsafarakis, 2016. "Redesigning product lines in a period of economic crisis: a hybrid simulated annealing algorithm with crossover," Annals of Operations Research, Springer, vol. 247(2), pages 617-633, December.
    17. Michalek, Jeremy J. & Ebbes, Peter & Adigüzel, Feray & Feinberg, Fred M. & Papalambros, Panos Y., 2011. "Enhancing marketing with engineering: Optimal product line design for heterogeneous markets," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 1-12.
    18. Cornelia Schön, 2010. "On the Optimal Product Line Selection Problem with Price Discrimination," Management Science, INFORMS, vol. 56(5), pages 896-902, May.
    19. Dimitris Bertsimas & Velibor V. Mišić, 2017. "Robust Product Line Design," Operations Research, INFORMS, vol. 65(1), pages 19-37, February.
    20. Hongmin Li & Scott Webster & Gwangjae Yu, 2020. "Product Design Under Multinomial Logit Choices: Optimization of Quality and Prices in an Evolving Product Line," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 1011-1025, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:46:y:2024:i:1:d:10.1007_s00291-023-00716-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.