IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v45y2023i4d10.1007_s00291-023-00729-9.html
   My bibliography  Save this article

A matheuristic for tactical locomotive and driver scheduling for the Swiss national railway company SBB Cargo AG

Author

Listed:
  • Marie-Sklaerder Vié

    (University of Geneva
    UniMail)

  • Nicolas Zufferey

    (University of Geneva
    UniMail)

  • Stefan Minner

    (Technical University of Munich
    Munich Data Science Institute (MDSI))

Abstract

At the scale of Switzerland, the national railway company SBB Cargo AG has to schedule its locomotives and drivers in order to be able to pull all trains. Two objective functions are considered in a two-stage lexicographic fashion: (1) the locomotive and driver costs and (2) the driver time that is spent without driving. As the problem instances tend to reach really big sizes (up to 1900 trains), we propose to schedule locomotives and drivers in a sequential way, thus having a sequence of smaller problems to solve. Moreover, for smaller instances, we also propose to schedule jointly locomotives and drivers in an integrated way, therefore increasing the search space but possibly leading to better solutions. In this paper, we present a mathematical formulation and model for the problem. We also consider the contract-related constraints of the drivers, and we propose a way to integrate some time flexibility in the schedules. Next, we propose an innovative matheuristic to solve the problem, relying on a descent local search and a rolling horizon decomposition. An important goal of this method is to explore thoroughly at which extent a general-purpose solver can be used on this problem. Finally, the benefits of each aspect of the model and of the method are analyzed in detail on the results obtained for 20 real SBB Cargo AG instances.

Suggested Citation

  • Marie-Sklaerder Vié & Nicolas Zufferey & Stefan Minner, 2023. "A matheuristic for tactical locomotive and driver scheduling for the Swiss national railway company SBB Cargo AG," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1113-1151, December.
  • Handle: RePEc:spr:orspec:v:45:y:2023:i:4:d:10.1007_s00291-023-00729-9
    DOI: 10.1007/s00291-023-00729-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-023-00729-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-023-00729-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markó Horváth & Tamás Kis, 2019. "Computing strong lower and upper bounds for the integrated multiple-depot vehicle and crew scheduling problem with branch-and-price," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 39-67, March.
    2. Lehuédé, Fabien & Péton, Olivier & Tricoire, Fabien, 2020. "A lexicographic minimax approach to the vehicle routing problem with route balancing," European Journal of Operational Research, Elsevier, vol. 282(1), pages 129-147.
    3. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    4. Scheffler, Martin & Neufeld, Janis S. & Hölscher, Michael, 2020. "An MIP-based heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting processes," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 64-80.
    5. Vié, Marie-Sklaerder & Zufferey, Nicolas & Cordeau, Jean-François, 2019. "Solving the Wire-Harness Design Problem at a European car manufacturer," European Journal of Operational Research, Elsevier, vol. 272(2), pages 712-724.
    6. Ravindra K. Ahuja & Jian Liu & James B. Orlin & Dushyant Sharma & Larry A. Shughart, 2005. "Solving Real-Life Locomotive-Scheduling Problems," Transportation Science, INFORMS, vol. 39(4), pages 503-517, November.
    7. M.A. Boschetti & A. Mingozzi & S. Ricciardelli, 2004. "An Exact Algorithm for the Simplified Multiple Depot Crew Scheduling Problem," Annals of Operations Research, Springer, vol. 127(1), pages 177-201, March.
    8. Jean Respen & Nicolas Zufferey & Philippe Wieser, 2017. "Three-level inventory deployment for a luxury watch company facing various perturbations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1195-1210, October.
    9. Coindreau, Marc-Antoine & Gallay, Olivier & Zufferey, Nicolas & Laporte, Gilbert, 2021. "Inbound and outbound flow integration for cross-docking operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1153-1163.
    10. Erwin Abbink & Matteo Fischetti & Leo Kroon & Gerrit Timmer & Michiel Vromans, 2005. "Reinventing Crew Scheduling at Netherlands Railways," Interfaces, INFORMS, vol. 35(5), pages 393-401, October.
    11. Simon Thevenin & Nicolas Zufferey & Jean-Yves Potvin, 2017. "Makespan minimisation for a parallel machine scheduling problem with preemption and job incompatibility," International Journal of Production Research, Taylor & Francis Journals, vol. 55(6), pages 1588-1606, March.
    12. Balachandran Vaidyanathan & Ravindra K. Ahuja & James B. Orlin, 2008. "The Locomotive Routing Problem," Transportation Science, INFORMS, vol. 42(4), pages 492-507, November.
    13. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    14. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    15. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.
    16. Zhong, Qingwei & Lusby, Richard M. & Larsen, Jesper & Zhang, Yongxiang & Peng, Qiyuan, 2019. "Rolling stock scheduling with maintenance requirements at the Chinese High-Speed Railway," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 24-44.
    17. Edward Lam & Pascal Van Hentenryck & Phil Kilby, 2020. "Joint Vehicle and Crew Routing and Scheduling," Transportation Science, INFORMS, vol. 54(2), pages 488-511, March.
    18. Marie-Sklaerder Vié & Nicolas Zufferey & Roel Leus, 2022. "Aircraft landing planning under uncertain conditions," Journal of Scheduling, Springer, vol. 25(2), pages 203-228, April.
    19. Cárdenas-Barrón, Leopoldo E. & Melo, Rafael A., 2021. "A fast and effective MIP-based heuristic for a selective and periodic inventory routing problem in reverse logistics," Omega, Elsevier, vol. 103(C).
    20. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    21. Kopanos, Georgios M. & Méndez, Carlos A. & Puigjaner, Luis, 2010. "MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry," European Journal of Operational Research, Elsevier, vol. 207(2), pages 644-655, December.
    22. Perumal, S.S.G. & Dollevoet, T.A.B. & Huisman, D. & Lusby, R.M. & Larsen, J. & Riis, M., 2020. "Solution Approaches for Vehicle and Crew Scheduling with Electric Buses," Econometric Institute Research Papers EI-2020-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    23. Knut Haase & Guy Desaulniers & Jacques Desrosiers, 2001. "Simultaneous Vehicle and Crew Scheduling in Urban Mass Transit Systems," Transportation Science, INFORMS, vol. 35(3), pages 286-303, August.
    24. Christian Rählmann & Ulrich W. Thonemann, 2020. "Railway crew scheduling with semi-flexible timetables," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 835-862, December.
    25. Tallys H. Yunes & Arnaldo V. Moura & Cid C. de Souza, 2005. "Hybrid Column Generation Approaches for Urban Transit Crew Management Problems," Transportation Science, INFORMS, vol. 39(2), pages 273-288, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Ge & Natalia Kliewer & Abtin Nourmohammadzadeh & Stefan Voß & Lin Xie, 2024. "Revisiting the richness of integrated vehicle and crew scheduling," Public Transport, Springer, vol. 16(3), pages 775-801, October.
    2. Frisch, Sarah & Hungerländer, Philipp & Jellen, Anna & Primas, Bernhard & Steininger, Sebastian & Weinberger, Dominic, 2021. "Solving a real-world Locomotive Scheduling Problem with Maintenance Constraints," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 386-409.
    3. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    4. Liu, Xiaowei & Peng, Qiyuan & Du, Bo & Zhang, Yongxiang & Zhong, Qingwei & Yan, Xu, 2024. "An influence path analytic study for the operational performance of large passenger railway stations: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
    5. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2018. "Integrated train timetabling and locomotive assignment," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 573-593.
    6. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Tao, Siyu & Zhang, Bojian & Peng, Qiyuan, 2024. "A branch-and-price algorithm for integrating urban rail crew scheduling and rostering problems," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    7. Hanane Krim & Nicolas Zufferey & Jean-Yves Potvin & Rachid Benmansour & David Duvivier, 2022. "Tabu search for a parallel-machine scheduling problem with periodic maintenance, job rejection and weighted sum of completion times," Journal of Scheduling, Springer, vol. 25(1), pages 89-105, February.
    8. Scheffler, Martin & Neufeld, Janis S. & Hölscher, Michael, 2020. "An MIP-based heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting processes," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 64-80.
    9. Shah, Nirav & Kumar, Subodha & Bastani, Farokh & Yen, I-Ling, 2012. "Optimization models for assessing the peak capacity utilization of intelligent transportation systems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 239-251.
    10. Belgacem Bouzaiene-Ayari & Clark Cheng & Sourav Das & Ricardo Fiorillo & Warren B. Powell, 2016. "From Single Commodity to Multiattribute Models for Locomotive Optimization: A Comparison of Optimal Integer Programming and Approximate Dynamic Programming," Transportation Science, INFORMS, vol. 50(2), pages 366-389, May.
    11. Nourbakhsh, Seyed Mohammad & Ouyang, Yanfeng, 2010. "Optimal fueling strategies for locomotive fleets in railroad networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1104-1114, September.
    12. Wang, Entai & Yang, Lixing & Yin, Jiateng & Zhang, Jinlei & Gao, Ziyou, 2024. "Passenger-oriented rolling stock scheduling in the metro system with multiple depots: Network flow based approaches," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    13. Emir Hüseyin Özder & Evrencan Özcan & Tamer Eren, 2019. "Staff Task-Based Shift Scheduling Solution with an ANP and Goal Programming Method in a Natural Gas Combined Cycle Power Plant," Mathematics, MDPI, vol. 7(2), pages 1-26, February.
    14. Thomas Breugem & Twan Dollevoet & Dennis Huisman, 2022. "Is Equality Always Desirable? Analyzing the Trade-Off Between Fairness and Attractiveness in Crew Rostering," Management Science, INFORMS, vol. 68(4), pages 2619-2641, April.
    15. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    16. Petr KOZLOV & Sergey VAKULENKO & Nikolay TUSHIN & Elena TIMUKHINA, 2017. "Model To Calculate The Optimal Mode Of Train Locomotives Turnover," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 12(3), pages 125-133, September.
    17. Pan, Hanchuan & Liu, Zhigang & Yang, Lixing & Liang, Zhe & Wu, Qiang & Li, Sijie, 2021. "A column generation-based approach for integrated vehicle and crew scheduling on a single metro line with the fully automatic operation system by partial supervision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    18. Haahr, Jørgen T. & Wagenaar, Joris C. & Veelenturf, Lucas P. & Kroon, Leo G., 2016. "A comparison of two exact methods for passenger railway rolling stock (re)scheduling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 15-32.
    19. Haahr, J.T. & Wagenaar, J.C. & Veelenturf, L.P. & Kroon, L.G., 2015. "A Comparison of Two Exact Methods for Passenger Railway Rolling Stock (Re)Scheduling," ERIM Report Series Research in Management ERS-2015-007-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Camilo Ortiz-Astorquiza & Jean-François Cordeau & Emma Frejinger, 2021. "The Locomotive Assignment Problem with Distributed Power at the Canadian National Railway Company," Transportation Science, INFORMS, vol. 55(2), pages 510-531, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:45:y:2023:i:4:d:10.1007_s00291-023-00729-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.