IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v42y2020i4d10.1007_s00291-020-00599-5.html
   My bibliography  Save this article

Robust spotter scheduling in trailer yards

Author

Listed:
  • Giorgi Tadumadze

    (Technische Universität Darmstadt)

  • Nils Boysen

    (Friedrich-Schiller-Universität Jena)

  • Simon Emde

    (Aarhus University)

Abstract

Spotters (also denoted as switchers) are specialized terminal tractors, which are dedicated to the rapid maneuvering of semitrailers between parking lot and dock doors in large trailer yards. This paper is dedicated to spotter scheduling, i.e., the assignment of predefined trailer movements to a given fleet of spotters. The limited number of dock doors for loading and unloading is often the scarce resource during trailer processing, so that idle time of the bottleneck, e.g., caused by unforeseen delay in the yard, is to be avoided. In this setting, we aim to insert time buffers between any pair of subsequent jobs assigned to the same spotter, so that small delays are not propagated and subsequent jobs can still be executed in a timely manner. We formalize two versions of the resulting robust spotter scheduling problem and provide efficient algorithms for finding optimal solutions in polynomial time. Furthermore, we simulate delays during the execution of spotter schedules and show that the right robustness objective can greatly improve yard performance.

Suggested Citation

  • Giorgi Tadumadze & Nils Boysen & Simon Emde, 2020. "Robust spotter scheduling in trailer yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 995-1021, December.
  • Handle: RePEc:spr:orspec:v:42:y:2020:i:4:d:10.1007_s00291-020-00599-5
    DOI: 10.1007/s00291-020-00599-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-020-00599-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-020-00599-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Briskorn & Joseph Leung & Michael Pinedo, 2011. "Robust scheduling on a single machine using time buffers," IISE Transactions, Taylor & Francis Journals, vol. 43(6), pages 383-398.
    2. Aytug, Haldun & Lawley, Mark A. & McKay, Kenneth & Mohan, Shantha & Uzsoy, Reha, 2005. "Executing production schedules in the face of uncertainties: A review and some future directions," European Journal of Operational Research, Elsevier, vol. 161(1), pages 86-110, February.
    3. Boysen, Nils & Fliedner, Malte, 2010. "Cross dock scheduling: Classification, literature review and research agenda," Omega, Elsevier, vol. 38(6), pages 413-422, December.
    4. Tadumadze, Giorgi & Emde, Simon & Diefenbach, Heiko, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 120609, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Lotte Berghman & Roel Leus & Frits Spieksma, 2014. "Optimal solutions for a dock assignment problem with trailer transportation," Annals of Operations Research, Springer, vol. 213(1), pages 3-25, February.
    6. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    7. Tadumadze, Giorgi & Boysen, Nils & Emde, Simon & Weidinger, Felix, 2019. "Integrated truck and workforce scheduling to accelerate the unloading of trucks," European Journal of Operational Research, Elsevier, vol. 278(1), pages 343-362.
    8. Nicholas G. Hall & Marc E. Posner, 2001. "Generating Experimental Data for Computational Testing with Machine Scheduling Applications," Operations Research, INFORMS, vol. 49(6), pages 854-865, December.
    9. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    10. Tadumadze, Giorgi & Boysen, Nils & Emde, Simon & Weidinger, Felix, 2019. "Integrated truck and workforce scheduling to accelerate the unloading of trucks," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 112842, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Van de Vonder, Stijn & Demeulemeester, Erik & Herroelen, Willy & Leus, Roel, 2005. "The use of buffers in project management: The trade-off between stability and makespan," International Journal of Production Economics, Elsevier, vol. 97(2), pages 227-240, August.
    12. Boysen, Nils & Fedtke, Stefan & Weidinger, Felix, 2017. "Truck Scheduling in the Postal Service Industry," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126193, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Battini, Daria & Boysen, Nils & Emde, Simon, 2013. "Just-in-Time supermarkets for part supply in the automobile industry," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79438, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. Ladier, Anne-Laure & Alpan, Gülgün, 2016. "Cross-docking operations: Current research versus industry practice," Omega, Elsevier, vol. 62(C), pages 145-162.
    15. Daria Battini & Nils Boysen & Simon Emde, 2013. "Just-in-Time supermarkets for part supply in the automobile industry," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 24(2), pages 209-217, July.
    16. Nils Boysen & Stefan Fedtke & Felix Weidinger, 2017. "Truck Scheduling in the Postal Service Industry," Transportation Science, INFORMS, vol. 51(2), pages 723-736, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolff, Pascal & Emde, Simon & Pfohl, Hans-Christian, 2021. "Internal resource requirements: The better performance metric for truck scheduling?," Omega, Elsevier, vol. 103(C).
    2. Tadumadze, Giorgi & Boysen, Nils & Emde, Simon & Weidinger, Felix, 2019. "Integrated truck and workforce scheduling to accelerate the unloading of trucks," European Journal of Operational Research, Elsevier, vol. 278(1), pages 343-362.
    3. Xi, Xiang & Changchun, Liu & Yuan, Wang & Loo Hay, Lee, 2020. "Two-stage conflict robust optimization models for cross-dock truck scheduling problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    4. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    5. Stefan Bugow & Carolin Kellenbrink, 2023. "The parcel hub scheduling problem with limited conveyor capacity and controllable unloading speeds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 325-357, June.
    6. Simon Emde & Hamid Abedinnia & Anne Lange & Christoph H. Glock, 2020. "Scheduling personnel for the build-up of unit load devices at an air cargo terminal with limited space," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 397-426, June.
    7. Boysen, Nils & Briskorn, Dirk & Fedtke, Stefan & Schmickerath, Marcel, 2019. "Automated sortation conveyors: A survey from an operational research perspective," European Journal of Operational Research, Elsevier, vol. 276(3), pages 796-815.
    8. Lyu, Zhongyuan & Huang, George Q., 2023. "Cross-docking based factory logistics unitisation process: An approximate dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 311(1), pages 112-124.
    9. Hans Corsten & Ferdinand Becker & Hagen Salewski, 2020. "Integrating truck and workforce scheduling in a cross-dock: analysis of different workforce coordination policies," Journal of Business Economics, Springer, vol. 90(2), pages 207-237, March.
    10. Mohammed Hichame Benbitour & Evren Sahin, 2018. "The use of internal cross-docking in just-in-time plants," Post-Print hal-01793491, HAL.
    11. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    12. Coindreau, Marc-Antoine & Gallay, Olivier & Zufferey, Nicolas & Laporte, Gilbert, 2021. "Inbound and outbound flow integration for cross-docking operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1153-1163.
    13. Pilz, Danny & Schwerdfeger, Stefan & Boysen, Nils, 2022. "Make or break: Coordinated assignment of parking space for breaks and rest periods in long-haul trucking," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 45-64.
    14. Mohammad Amin Amani & Mohammad Mahdi Nasiri, 2023. "A novel cross docking system for distributing the perishable products considering preemption: a machine learning approach," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-32, July.
    15. Vanajakumari, Manoj & Sun, Haoying & Jones, Ashley & Sriskandarajah, Chelliah, 2022. "Supply chain planning: A case for Hybrid Cross-Docks," Omega, Elsevier, vol. 108(C).
    16. Simon Emde, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 321-345, January.
    17. Gaudioso, Manlio & Monaco, Maria Flavia & Sammarra, Marcello, 2021. "A Lagrangian heuristics for the truck scheduling problem in multi-door, multi-product Cross-Docking with constant processing time," Omega, Elsevier, vol. 101(C).
    18. Fonseca, Gabriela B. & Nogueira, Thiago H. & Ravetti, Martín Gómez, 2019. "A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 139-154.
    19. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    20. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:42:y:2020:i:4:d:10.1007_s00291-020-00599-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.