IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v99y2019i3d10.1007_s11069-018-3534-2.html
   My bibliography  Save this article

Impact of urbanization on hydrological processes under different precipitation scenarios

Author

Listed:
  • Wenbin Zang

    (China Institute of Water Resources and Hydropower Research
    China Institute of Water Resources and Hydropower Research)

  • Shu Liu

    (China Institute of Water Resources and Hydropower Research)

  • Shifeng Huang

    (China Institute of Water Resources and Hydropower Research)

  • Jiren Li

    (China Institute of Water Resources and Hydropower Research)

  • Yicheng Fu

    (China Institute of Water Resources and Hydropower Research)

  • Yayong Sun

    (China Institute of Water Resources and Hydropower Research)

  • Jingwei Zheng

    (China Institute of Water Resources and Hydropower Research)

Abstract

According to analysing the trends of land use changes in the upper reaches of Minjiang River in the past 30 years and precipitation in the last 50 years, nine types of simulation scenarios were constructed for different precipitation conditions and urbanization development processes. Based on the “five sub-basin selection principles” and “two simulation results evaluation indicators” proposed, the paper studied the influence of the urbanization process on hydrological processes under different precipitation conditions using the SWAT model. The primary conclusions are as follows: (1) the simulation results under the two kinds of land use transfer scenarios show the same laws: (a) when forest land (or grassland) is transferred to urban land, actual evapotranspiration (ET), soil water content (SW), amount of water percolating out of root zone (PERC) and groundwater contribution to streamflow (GW_Q) show a decreasing trend, and the reduction in watershed hydrological indexes is manifested as “high precipitation > average precipitation > low precipitation”. Moreover, surface runoff (SURQ), water yield (WYLD) and annual runoff show an increasing trend, and the increment in SURQ shows “high precipitation > average precipitation > low precipitation”, while the increment in WYLD and the simulated annual runoff show “low precipitation > average precipitation > high precipitation”. (b) Through analysis of the contribution of unit proportion transfer (CUPT) of watershed hydrological indicators, “SURQ > PERC > GW_Q > ET > SW” is observed in all precipitation scenarios. (2) Comparing simulation results between the two kinds of land use transfer scenarios: the CUPT variations of ET, SURQ and WYLD and the contribution of unit area transfer variations of daily flood peak and annual runoff both show “forest land transfer to urban land > grassland transfer to urban land”. Finally, two special phenomena observed in the analysis of the simulation results were discussed. The study results can provide a scientific basis for urban planning and construction for reducing the impact on urban flood.

Suggested Citation

  • Wenbin Zang & Shu Liu & Shifeng Huang & Jiren Li & Yicheng Fu & Yayong Sun & Jingwei Zheng, 2019. "Impact of urbanization on hydrological processes under different precipitation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1233-1257, December.
  • Handle: RePEc:spr:nathaz:v:99:y:2019:i:3:d:10.1007_s11069-018-3534-2
    DOI: 10.1007/s11069-018-3534-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3534-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3534-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    2. Shifeng Huang & Wenbin Zang & Mei Xu & Xiaotao Li & Xuecheng Xie & Zhongmin Li & Jisheng Zhu, 2015. "Study on runoff simulation of the upstream of Minjiang River under future climate change scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 139-154, February.
    3. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priyanka Majumder & Mrinmoy Majumder & Apu Kumar Saha & Soumitra Nath, 2020. "Selection of features for analysis of reliability of performance in hydropower plants: a multi-criteria decision making approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3239-3265, April.
    2. Beibei Liu & Chaowei Xu & Jiashuai Yang & Sen Lin & Xi Wang, 2022. "Effect of Land Use and Drainage System Changes on Urban Flood Spatial Distribution in Handan City: A Case Study," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    3. Kaize Zhang & Juqin Shen & Ran He & Bihang Fan & Han Han, 2019. "Dynamic Analysis of the Coupling Coordination Relationship between Urbanization and Water Resource Security and Its Obstacle Factor," IJERPH, MDPI, vol. 16(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Xin Wen & Ana María Alarcón Ferreira & Lynn M. Rae & Hirmand Saffari & Zafar Adeel & Laura A. Bakkensen & Karla M. Méndez Estrada & Gregg M. Garfin & Renee A. McPherson & Ernesto Franco Vargas, 2022. "A Comprehensive Methodology for Evaluating the Economic Impacts of Floods: An Application to Canada, Mexico, and the United States," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    3. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    4. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    5. Chrisendo, Daniel, 2023. "Gender-based discrimination and global crop yield," 2023 Annual Meeting, July 23-25, Washington D.C. 335489, Agricultural and Applied Economics Association.
    6. Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Teresa Armada Brás & Jonas Jägermeyr & Júlia Seixas, 2019. "Exposure of the EU-28 food imports to extreme weather disasters in exporting countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1373-1393, December.
    8. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    9. Yusifzada, Tural, 2022. "Response of Inflation to the Climate Stress: Evidence from Azerbaijan," MPRA Paper 116522, University Library of Munich, Germany, revised 20 Sep 2022.
    10. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    11. Dilshad Ahmad & Muhammad Afzal, 2021. "Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11406-11426, August.
    12. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    13. Balázs Varga & Zsuzsanna Farkas & Emese Varga-László & Gyula Vida & Ottó Veisz, 2022. "Elevated Atmospheric CO 2 Concentration Influences the Rooting Habits of Winter-Wheat ( Triticum aestivum L.) Varieties," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    14. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    15. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    16. Qimeng Pan & Lysa Porth & Hong Li, 2022. "Assessing the Effectiveness of the Actuaries Climate Index for Estimating the Impact of Extreme Weather on Crop Yield and Insurance Applications," Sustainability, MDPI, vol. 14(11), pages 1-24, June.
    17. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    18. Maruyama Rentschler,Jun Erik & Salhab,Melda, 2020. "People in Harm's Way : Flood Exposure and Poverty in 189 Countries," Policy Research Working Paper Series 9447, The World Bank.
    19. Shuhei Yoshimoto & Giriraj Amarnath, 2018. "Application of a flood inundation model to analyze the potential impacts of a flood control plan in Mundeni Aru river basin, Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 491-513, March.
    20. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:99:y:2019:i:3:d:10.1007_s11069-018-3534-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.