IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v86y2017i1d10.1007_s11069-016-2720-3.html
   My bibliography  Save this article

Spatial exposure aspects contributing to vulnerability and resilience assessments of urban critical infrastructure in a flood and blackout context

Author

Listed:
  • Alexander Fekete

    (TH Köln - University of Applied Sciences)

  • Katerina Tzavella

    (TH Köln - University of Applied Sciences)

  • Roland Baumhauer

    (Institut für Geographie und Geologie)

Abstract

Blackouts aggravate the situation during an extreme river-flood event by affecting residents and visitors of an urban area. But also rescue services, fire brigades and basic urban infrastructure such as hospitals have to operate under suboptimal conditions. This paper aims to demonstrate how affected people, critical infrastructure, such as electricity, roads and civil protection infrastructure are intertwined during a flood event, and how this can be analysed in a spatially explicit way. The city of Cologne (Germany) is used as a case study since it is river-flood prone and thousands of people had been affected in the floods in 1993 and 1995. Components of vulnerability and resilience assessments are selected with a focus of analysing exposure to floods, and five steps of analysis are demonstrated using a geographic information system. Data derived by airborne and spaceborne earth observation to capture flood extent and demographic data are combined with place-based information about location and distance of objects. The results illustrate that even fire brigade stations, hospitals and refugee shelters are within the flood scenario area. Methodologically, the paper shows how criticality of infrastructure can be analysed and how static vulnerability assessments can be improved by adding routing calculations. Fire brigades can use this information to improve planning on how to access hospitals and shelters under flooded road conditions.

Suggested Citation

  • Alexander Fekete & Katerina Tzavella & Roland Baumhauer, 2017. "Spatial exposure aspects contributing to vulnerability and resilience assessments of urban critical infrastructure in a flood and blackout context," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 151-176, March.
  • Handle: RePEc:spr:nathaz:v:86:y:2017:i:1:d:10.1007_s11069-016-2720-3
    DOI: 10.1007/s11069-016-2720-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2720-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2720-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Fekete & Peter Lauwe & Wolfram Geier, 2012. "Risk management goals and identification of critical infrastructures," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 8(4), pages 336-353.
    2. Alexander Fekete, 2012. "Spatial disaster vulnerability and risk assessments: challenges in their quality and acceptance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1161-1178, April.
    3. G. Grünthal & A. Thieken & J. Schwarz & K. Radtke & A. Smolka & B. Merz, 2006. "Comparative Risk Assessments for the City of Cologne – Storms, Floods, Earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 21-44, May.
    4. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    5. Philip J. Ward & Brenden Jongman & Peter Salamon & Alanna Simpson & Paul Bates & Tom De Groeve & Sanne Muis & Erin Coughlan de Perez & Roberto Rudari & Mark A. Trigg & Hessel C. Winsemius, 2015. "Usefulness and limitations of global flood risk models," Nature Climate Change, Nature, vol. 5(8), pages 712-715, August.
    6. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    7. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arvidsson, Björn & Johansson, Jonas & Guldåker, Nicklas, 2021. "Critical infrastructure, geographical information science and risk governance: A systematic cross-field review," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katerina Tzavella & Alexander Fekete & Frank Fiedrich, 2018. "Opportunities provided by geographic information systems and volunteered geographic information for a timely emergency response during flood events in Cologne, Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 29-57, April.
    2. Arvidsson, Björn & Johansson, Jonas & Guldåker, Nicklas, 2021. "Critical infrastructure, geographical information science and risk governance: A systematic cross-field review," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Casey Zuzak & Matthew Mowrer & Emily Goodenough & Jordan Burns & Nicholas Ranalli & Jesse Rozelle, 2022. "The national risk index: establishing a nationwide baseline for natural hazard risk in the US," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2331-2355, November.
    4. Edna M. Rodríguez-Gaviria & Sol Ochoa-Osorio & Alejandro Builes-Jaramillo & Verónica Botero-Fernández, 2019. "Computational Bottom-Up Vulnerability Indicator for Low-Income Flood-Prone Urban Areas," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    5. Blake Walker & Cameron Taylor-Noonan & Alan Tabbernor & T’Brenn McKinnon & Harsimran Bal & Dan Bradley & Nadine Schuurman & John Clague, 2014. "A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1209-1222, November.
    6. Iuliana Armas & Radu Ionescu & Cristina Posner, 2015. "Flood risk perception along the Lower Danube river, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1913-1931, December.
    7. Stephanie Chang & Jackie Yip & Shona Zijll de Jong & Rebecca Chaster & Ashley Lowcock, 2015. "Using vulnerability indicators to develop resilience networks: a similarity approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1827-1841, September.
    8. Hsieh, Cheng-Hsien & Feng, Cheng-Min, 2020. "The highway resilience and vulnerability in Taiwan," Transport Policy, Elsevier, vol. 87(C), pages 1-9.
    9. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    10. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    11. Joan Pauline Talubo & Roy Alvin Malenab & Stephen Morse & Devendra Saroj, 2022. "Practitioners’ Participatory Development of Indicators for Island Community Resilience to Disasters," Sustainability, MDPI, vol. 14(7), pages 1-28, March.
    12. Leslie Gillespie‐Marthaler & Katherine Nelson & Hiba Baroud & Mark Abkowitz, 2019. "Selecting Indicators for Assessing Community Sustainable Resilience," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2479-2498, November.
    13. Novak, D.C. & Sullivan, J.F. & Sentoff, K. & Dowds, J., 2020. "A framework to guide strategic disinvestment in roadway infrastructure considering social vulnerability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 436-451.
    14. Yu Duan & Junnan Xiong & Weiming Cheng & Nan Wang & Yi Li & Yufeng He & Jun Liu & Wen He & Gang Yang, 2022. "Flood vulnerability assessment using the triangular fuzzy number-based analytic hierarchy process and support vector machine model for the Belt and Road region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 269-294, January.
    15. Junfei Chen & Liming Liu & Jinpeng Pei & Menghua Deng, 2021. "An ensemble risk assessment model for urban rainstorm disasters based on random forest and deep belief nets: a case study of Nanjing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2671-2692, July.
    16. Daniel Felsenstein & Michal Lichter, 2014. "Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 463-491, March.
    17. Seth E. Spielman & Joseph Tuccillo & David C. Folch & Amy Schweikert & Rebecca Davies & Nathan Wood & Eric Tate, 2020. "Evaluating social vulnerability indicators: criteria and their application to the Social Vulnerability Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 417-436, January.
    18. Baoyin Liu & Yim Ling Siu & Gordon Mitchell & Wei Xu, 2016. "The danger of mapping risk from multiple natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 139-153, May.
    19. Arshavir Avagyan & Hasmik Manandyan & Aleksandr Arakelyan & Artak Piloyan, 2018. "Toward a disaster risk assessment and mapping in the virtual geographic environment of Armenia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 283-309, May.
    20. Novak, David C. & Sullivan, James L. & Niles, Meredith T., 2021. "Targeted Investment for Food Access," Institute of Transportation Studies, Working Paper Series qt9b71p9zg, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:86:y:2017:i:1:d:10.1007_s11069-016-2720-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.