IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v83y2016i2d10.1007_s11069-016-2353-6.html
   My bibliography  Save this article

Urban heat islands in Hong Kong: statistical modeling and trend detection

Author

Listed:
  • Weiwen Wang

    (The Chinese University of Hong Kong)

  • Wen Zhou

    (City University of Hong Kong)

  • Edward Yan Yung Ng

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong
    The Chinese University of Hong Kong)

  • Yong Xu

    (The Chinese University of Hong Kong)

Abstract

Urban heat islands (UHIs), usually defined as temperature differences between urban areas and their surrounding rural areas, are one of the most significant anthropogenic modifications to the Earth’s climate. This study applies the extreme value theory to model and detect trends in extreme UHI events in Hong Kong, which have rarely been documented. Extreme UHI events are defined as UHIs with intensity higher than a specific threshold, 4.8 for summer and 7.8 °C for winter. Statistical modeling based on extreme value theory is found to permit realistic modeling of these extreme events. Trends of extreme UHI intensity, frequency, and duration are introduced through changes in parameters of generalized Pareto, Poisson, and geometric distributions, respectively. During the 27-year study period, none of the quantities in winter analyzed in this study increased significantly. The annual mean summertime daily maximum UHI intensities, which are samples from a Gaussian distribution, show an increasing but nonsignificant linear trend. However, the intensity of extreme UHI events in summer is increasing significantly, which implies that the risk of mortality and heat-related diseases due to heat stress at night (when the daily maximum UHI occurs) in summer is also increasing. The warming climate has threatened and will continue to threaten inhabitants of this subtropical high-density city. Strategies for adaptation to and mitigation of climate change, such as adding greenery and planning a city with good natural ventilation, are needed.

Suggested Citation

  • Weiwen Wang & Wen Zhou & Edward Yan Yung Ng & Yong Xu, 2016. "Urban heat islands in Hong Kong: statistical modeling and trend detection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 885-907, September.
  • Handle: RePEc:spr:nathaz:v:83:y:2016:i:2:d:10.1007_s11069-016-2353-6
    DOI: 10.1007/s11069-016-2353-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2353-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2353-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    2. David Hondula & Robert Davis, 2014. "The predictability of high-risk zones for heat-related mortality in seven US cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 771-788, November.
    3. Marius-Victor Birsan & Alexandru Dumitrescu & Dana Micu & Sorin Cheval, 2014. "Changes in annual temperature extremes in the Carpathians since AD 1961," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1899-1910, December.
    4. Sarah-Maude Guindon & N. Nirupama, 2015. "Reducting risk from urban heat island effects in cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 823-831, June.
    5. Dana Habeeb & Jason Vargo & Brian Stone, 2015. "Rising heat wave trends in large US cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1651-1665, April.
    6. Yanxu Liu & Shuangshuang Li & Yanglin Wang & Tian Zhang & Jian Peng & Tianyi Li, 2015. "Identification of multiple climatic extremes in metropolis: a comparison of Guangzhou and Shenzhen, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 939-953, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pui Hing Chau & Paul Siu Fai Yip & Eric Ho Yin Lau & Yee Ting Ip & Frances Yik Wa Law & Rainbow Tin Hung Ho & Angela Yee Man Leung & Janet Yuen Ha Wong & Jean Woo, 2020. "Hot Weather and Suicide Deaths among Older Adults in Hong Kong, 1976–2014: A Retrospective Study," IJERPH, MDPI, vol. 17(10), pages 1-16, May.
    2. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.
    2. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    3. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    4. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    5. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    6. Shaojing Jiang, 2023. "Compound Heat Vulnerability in the Record-Breaking Hot Summer of 2022 over the Yangtze River Delta Region," IJERPH, MDPI, vol. 20(8), pages 1-15, April.
    7. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    8. Cho, Hyunkuk, 2017. "The effects of summer heat on academic achievement: A cohort analysis," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 185-196.
    9. Rituraj Neog & Shukla Acharjee & Jiten Hazarika, 2021. "Spatiotemporal analysis of road surface temperature (RST) and building wall temperature (BWT) and its relation to the traffic volume at Jorhat urban environment, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10080-10092, July.
    10. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    11. Jiajie Xin & Mingjin Zhan & Bin Xu & Haijun Li & Longfei Zhan, 2023. "Variations of Extreme Temperature Event Indices in Six Temperature Zones in China from 1961 to 2020," Sustainability, MDPI, vol. 15(15), pages 1-15, July.
    12. Suresh Kumar Rathi & Soham Chakraborty & Saswat Kishore Mishra & Ambarish Dutta & Lipika Nanda, 2021. "A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    13. Aerzuna Abulimiti & Yongqiang Liu & Lianmei Yang & Abuduwaili Abulikemu & Yusuyunjiang Mamitimin & Shuai Yuan & Reifat Enwer & Zhiyi Li & Abidan Abuduaini & Zulipina Kadier, 2024. "Urbanization Effect on Changes in Extreme Climate Events in Urumqi, China, from 1976 to 2018," Land, MDPI, vol. 13(3), pages 1-25, February.
    14. Mahshid Ghanbari & Mazdak Arabi & Matei Georgescu & Ashley M. Broadbent, 2023. "The role of climate change and urban development on compound dry-hot extremes across US cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    16. Wei Wu & Qingsheng Liu & He Li & Chong Huang, 2023. "Spatiotemporal Distribution of Heatwave Hazards in the Chinese Mainland for the Period 1990–2019," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    17. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    18. Marie De Groeve & Eda Kale & Scott Allan Orr & Tim De Kock, 2023. "Preliminary Experimental Laboratory Methods to Analyse the Insulation Capacity of Vertical Greening on Temperature and Relative Humidity," Sustainability, MDPI, vol. 15(15), pages 1-13, July.
    19. Kelly C. Saverino & Emily Routman & Todd R. Lookingbill & Andre M. Eanes & Jeremy S. Hoffman & Rong Bao, 2021. "Thermal Inequity in Richmond, VA: The Effect of an Unjust Evolution of the Urban Landscape on Urban Heat Islands," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    20. Cristina Andrade & André Fonseca & João A. Santos, 2023. "Climate Change Trends for the Urban Heat Island Intensities in Two Major Portuguese Cities," Sustainability, MDPI, vol. 15(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:83:y:2016:i:2:d:10.1007_s11069-016-2353-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.