IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2021i1p283-d712510.html
   My bibliography  Save this article

A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India

Author

Listed:
  • Suresh Kumar Rathi

    (Department of Research, MAMTA Health Institute for Mother and Child, New Delhi 110048, India)

  • Soham Chakraborty

    (Indian Institute of Public Health, Public Health Foundation of India, Bhubaneswar 751013, India)

  • Saswat Kishore Mishra

    (Centre for Health Care Management, Administrative Staff College of India, Hyderabad 500082, India)

  • Ambarish Dutta

    (Indian Institute of Public Health, Public Health Foundation of India, Bhubaneswar 751013, India)

  • Lipika Nanda

    (Department of Multisectoral Planning, Public Health Foundation of India, Gurugram 122002, India)

Abstract

Extreme heat and heat waves have been established as disasters which can lead to a great loss of life. Several studies over the years, both within and outside of India, have shown how extreme heat events lead to an overall increase in mortality. However, the impact of extreme heat, similar to other disasters, depends upon the vulnerability of the population. This study aims to assess the extreme heat vulnerability of the population of four cities with different characteristics across India. This cross-sectional study included 500 households from each city across the urban localities (both slum and non-slum) of Ongole in Andhra Pradesh, Karimnagar in Telangana, Kolkata in West Bengal and Angul in Odisha. Twenty-one indicators were used to construct a household vulnerability index to understand the vulnerability of the cities. The results have shown that the majority of the households fell under moderate to high vulnerability level across all the cities. Angul and Kolkata were found to be more highly vulnerable as compared to Ongole and Karimnagar. Further analysis also revealed that household vulnerability is more significantly related to adaptive capacity than sensitivity and exposure. Heat Vulnerability Index can help in identifying the vulnerable population and scaling up adaptive practices.

Suggested Citation

  • Suresh Kumar Rathi & Soham Chakraborty & Saswat Kishore Mishra & Ambarish Dutta & Lipika Nanda, 2021. "A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2021:i:1:p:283-:d:712510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/1/283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/1/283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luis Inostroza & Massimo Palme & Francisco de la Barrera, 2016. "A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-26, September.
    2. J.C. Gaillard, 2010. "Vulnerability, capacity and resilience: Perspectives for climate and development policy," Journal of International Development, John Wiley & Sons, Ltd., vol. 22(2), pages 218-232.
    3. Tamma Carleton & Amir Jina & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Robert E Kopp & Kelly E McCusker & Ishan Nath & James Rising & Ashwin Rode & Hee , 2023. "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(4), pages 2037-2105.
    4. Dana Habeeb & Jason Vargo & Brian Stone, 2015. "Rising heat wave trends in large US cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1651-1665, April.
    5. Kevin Laranjeira & Franziska Göttsche & Joern Birkmann & Matthias Garschagen, 2021. "Heat vulnerability and adaptive capacities: findings of a household survey in Ludwigsburg, BW, Germany," Climatic Change, Springer, vol. 166(1), pages 1-19, May.
    6. Junzhe Bao & Xudong Li & Chuanhua Yu, 2015. "The Construction and Validation of the Heat Vulnerability Index, a Review," IJERPH, MDPI, vol. 12(7), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barun Mukhopadhyay & Charles A. Weitz, 2022. "Heat Exposure, Heat-Related Symptoms and Coping Strategies among Elderly Residents of Urban Slums and Rural Vilages in West Bengal, India," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    2. Yu-Ling Sun & Chun-Hua Zhang & Ying-Jie Lian & Jia-Min Zhao, 2022. "Exploring the Global Research Trends of Cities and Climate Change Based on a Bibliometric Analysis," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    3. Lipika Nanda & Soham Chakraborty & Saswat Kishore Mishra & Ambarish Dutta & Suresh Kumar Rathi, 2022. "Characteristics of Households’ Vulnerability to Extreme Heat: An Analytical Cross-Sectional Study from India," IJERPH, MDPI, vol. 19(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lipika Nanda & Soham Chakraborty & Saswat Kishore Mishra & Ambarish Dutta & Suresh Kumar Rathi, 2022. "Characteristics of Households’ Vulnerability to Extreme Heat: An Analytical Cross-Sectional Study from India," IJERPH, MDPI, vol. 19(22), pages 1-14, November.
    2. You Jin Kwon & Dong Kun Lee & You Ha Kwon, 2020. "Is Sensible Heat Flux Useful for the Assessment of Thermal Vulnerability in Seoul (Korea)?," IJERPH, MDPI, vol. 17(3), pages 1-26, February.
    3. Lucille Alonso & Florent Renard, 2020. "A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context," IJERPH, MDPI, vol. 17(3), pages 1-21, February.
    4. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    5. Ana Raquel Nunes, 2021. "Exploring the interactions between vulnerability, resilience and adaptation to extreme temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2261-2293, December.
    6. Jasmina Ćetković & Slobodan Lakić & Angelina Živković & Miloš Žarković & Radoje Vujadinović, 2021. "Economic Analysis of Measures for GHG Emission Reduction," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    7. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    8. Fritz, Manuela, 2021. "Temperature and non-communicable diseases: Evidence from Indonesia's primary health care system," Passauer Diskussionspapiere, Volkswirtschaftliche Reihe V-84-21, University of Passau, Faculty of Business and Economics.
    9. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    10. Traeger, Christian, 2021. "ACE - Analytic Climate Economy," CEPR Discussion Papers 15968, C.E.P.R. Discussion Papers.
    11. Angela Rosa & Angela Santangelo & Simona Tondelli, 2021. "Investigating the Integration of Cultural Heritage Disaster Risk Management into Urban Planning Tools. The Ravenna Case Study," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    12. Carlota García Díaz & David Zambrana-Vasquez & Carmen Bartolomé, 2024. "Building Resilient Cities: A Comprehensive Review of Climate Change Adaptation Indicators for Urban Design," Energies, MDPI, vol. 17(8), pages 1-19, April.
    13. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
    14. Shaojing Jiang, 2023. "Compound Heat Vulnerability in the Record-Breaking Hot Summer of 2022 over the Yangtze River Delta Region," IJERPH, MDPI, vol. 20(8), pages 1-15, April.
    15. Aleš Urban & Katrin Burkart & Jan Kyselý & Christian Schuster & Eva Plavcová & Hana Hanzlíková & Petr Štěpánek & Tobia Lakes, 2016. "Spatial Patterns of Heat-Related Cardiovascular Mortality in the Czech Republic," IJERPH, MDPI, vol. 13(3), pages 1-19, March.
    16. Jamie Mullins & Corey White, 2019. "Does Access to Health Care Mitigate Environmental Damages?," Working Papers 1905, California Polytechnic State University, Department of Economics.
    17. See, Justin & Cuaton, Ginbert Permejo & Placino, Pryor & Vunibola, Suliasi & Thi, Huong Do & Dombroski, Kelly & McKinnon, Katharine, 2024. "From absences to emergences: Foregrounding traditional and Indigenous climate change adaptation knowledges and practices from Fiji, Vietnam and the Philippines," World Development, Elsevier, vol. 176(C).
    18. Andrea Di Ronco & Francesca Giacobbo & Antonio Cammi, 2020. "A Kalman Filter-Based Approach for Online Source-Term Estimation in Accidental Radioactive Dispersion Events," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    19. Cho, Hyunkuk, 2017. "The effects of summer heat on academic achievement: A cohort analysis," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 185-196.
    20. Mercy J. Borbor-Cordova & Geremy Ger & Angel A. Valdiviezo-Ajila & Mijail Arias-Hidalgo & David Matamoros & Indira Nolivos & Gonzalo Menoscal-Aldas & Federica Valle & Alessandro Pezzoli & Maria del Pi, 2020. "An Operational Framework for Urban Vulnerability to Floods in the Guayas Estuary Region: The Duran Case Study," Sustainability, MDPI, vol. 12(24), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2021:i:1:p:283-:d:712510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.