IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i7p1393-d1693242.html
   My bibliography  Save this article

Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design

Author

Listed:
  • Yuanyuan Li

    (Centre for Climate-Resilient and Low-Carbon Cities, College of Architecture and Urban Planning, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
    College of Art, Northeastern University, Shenyang 110819, China
    Institute for Smart City of Chongqing University in Liyang, Chongqing University, Liyang 213300, China)

  • Lina Zhao

    (College of Art, Xi’an University of Architecture and Technology, Xi’an 710311, China)

  • Hao Zheng

    (Architectural Intelligence Group, Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, China)

  • Xiaozhou Yang

    (College of Art, Northeastern University, Shenyang 110819, China)

Abstract

Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study takes New York City as a case and systematically investigates small-scale urban cooling strategies by integrating multiple factors, including adjustments to the blue–green ratio, spatial layouts, vegetation composition, building density, building height, and layout typologies. We utilize multi-source geographic data, including LiDAR derived land cover, OpenStreetMap data, and building footprint data, together with LST data retrieved from Landsat imagery, to develop a prediction model based on generative adversarial networks (GANs). This model can rapidly generate visual LST predictions under various configuration scenarios. This study employs a combination of qualitative and quantitative metrics to evaluate the performance of different model stages, selecting the most accurate model as the final experimental framework. Furthermore, the experimental design strictly controls the study area and pixel allocation, combining manual and automated methods to ensure the comparability of different ratio configurations. The main findings indicate that a blue–green ratio of 3:7 maximizes cooling efficiency; a shrub-to-tree coverage ratio of 2:8 performs best, with tree-dominated configurations outperforming shrub-dominated ones; concentrated linear layouts achieve up to a 10.01% cooling effect; and taller buildings exhibit significantly stronger UBGS cooling performance, with super-tall areas achieving cooling effects approximately 31 percentage points higher than low-rise areas. Courtyard layouts enhance airflow and synergistic cooling effects, whereas compact designs limit the cooling potential of UBGS. This study proposes an innovative application of GANs to address a key research gap in the quantitative optimization of UBGS configurations and provides a methodological reference for sustainable microclimate planning at the neighborhood scale.

Suggested Citation

  • Yuanyuan Li & Lina Zhao & Hao Zheng & Xiaozhou Yang, 2025. "Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design," Land, MDPI, vol. 14(7), pages 1-32, July.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1393-:d:1693242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/7/1393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/7/1393/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhuo, Sheng & Zhou, Wenwu & Fang, Ping & Ye, Jianyong & Luo, Haoze & Li, Hejun & Wu, Changzi & Chen, Weifan & Liu, Yue, 2024. "Cost-effective pearlescent pigments with high near-infrared reflectance and outstanding energy-saving ability for mitigating urban heat island effect," Applied Energy, Elsevier, vol. 353(PA).
    2. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    3. Haiying Gong & Yongqiang Cao & Jiaqi Yao & Nan Xu & Huanyu Chang & Shuqi Wu & Liuru Hu & Zihua Liu & Tong Liu & Zihao Zhang, 2024. "Factors Influencing Spatiotemporal Changes in the Urban Blue-Green Space Cooling Effect in Beijing–Tianjin–Hebei Based on Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(9), pages 1-16, September.
    4. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    5. Gabriele Manoli & Simone Fatichi & Markus Schläpfer & Kailiang Yu & Thomas W. Crowther & Naika Meili & Paolo Burlando & Gabriel G. Katul & Elie Bou-Zeid, 2019. "Magnitude of urban heat islands largely explained by climate and population," Nature, Nature, vol. 573(7772), pages 55-60, September.
    6. R. Nandhini Abirami & P. M. Durai Raj Vincent & Kathiravan Srinivasan & Usman Tariq & Chuan-Yu Chang & Dr Shahzad Sarfraz, 2021. "Deep CNN and Deep GAN in Computational Visual Perception-Driven Image Analysis," Complexity, Hindawi, vol. 2021, pages 1-30, April.
    7. Borui Li & Yimin Zhang & Sitong Zhao & Lili Zhao & Miao Wang & Hongwei Pei, 2025. "Urban Heat Island Effect in Different Sizes from a 3D Perspective: A Case Study in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 14(3), pages 1-17, February.
    8. Basyouni, Yassmin A. & Mahmoud, Hatem, 2024. "Affordable green materials for developed cool roof applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    9. Jiangdong Liu & Jinlei Qi & Peng Yin & Wei Liu & Cheng He & Ya Gao & Lu Zhou & Yixiang Zhu & Haidong Kan & Renjie Chen & Maigeng Zhou, 2024. "Rising cause-specific mortality risk and burden of compound heatwaves amid climate change," Nature Climate Change, Nature, vol. 14(11), pages 1201-1209, November.
    10. Tianji Wu & Xuhui Wang & Le Xuan & Zhaoyang Yan & Chao Wang & Chunlei Du & Yutong Su & Jingya Duan & Kanhua Yu, 2024. "How to Plan Urban Parks and the Surrounding Buildings to Maximize the Cooling Effect: A Case Study in Xi’an, China," Land, MDPI, vol. 13(8), pages 1-16, July.
    11. Sarfo, Isaac & Bi, Shuoben & Xu, Xiuhua & Yeboah, Emmanuel & Kwang, Clement & Batame, Michael & Addai, Foster Kofi & Adamu, Umar Wakil & Appea, Emmanuella Aboagye & Djan, Michael Atuahene & Otchwemah,, 2023. "Planning for cooler cities in Ghana: Contribution of green infrastructure to urban heat mitigation in Kumasi Metropolis," Land Use Policy, Elsevier, vol. 133(C).
    12. Xinyi Qiu & Sung-Ho Kil & Hyun-Kil Jo & Chan Park & Wonkyong Song & Yun Eui Choi, 2023. "Cooling Effect of Urban Blue and Green Spaces: A Case Study of Changsha, China," IJERPH, MDPI, vol. 20(3), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Estrada & Veronica Lupi & W. J. Wouter Botzen & Richard S. J. Tol, 2025. "Urban and non-urban contributions to the social cost of carbon," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Soumya Satyakanta Sethi & V. Vinoj & Partha Pratim Gogoi & Kiranmayi Landu & Debadatta Swain & U. C. Mohanty, 2024. "Spatio-temporal evolution of surface urban heat island over Bhubaneswar-Cuttack twin city: a rapidly growing tropical urban complex in Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15381-15402, June.
    3. David B. Olawade & Melissa McLaughlin & Yinka Julianah Adeniji & Gabriel Osasumwen Egbon & Arghavan Rahimi & Stergios Boussios, 2025. "Urban Microclimates and Their Relationship with Social Isolation: A Review," IJERPH, MDPI, vol. 22(6), pages 1-32, June.
    4. Adilkhanova, Indira & Ngarambe, Jack & Yun, Geun Young, 2022. "Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Anamika Shreevastava & Glynn Hulley & Sai Prasanth & TC Chakraborty & Diego Ramos Aguilera & Kelly Twomey Sanders & Yi Yin, 2025. "Contemporary income inequality outweighs historic redlining in shaping intra-urban heat disparities in Los Angeles," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Runfei Zhong & Song Song & Jianxin Zhang & Ziqiang Ye, 2024. "Spatial–temporal variation and temperature effect of urbanization in Guangdong Province from 1951 to 2018," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 9661-9683, April.
    7. Jonas Schwaab & Ronny Meier & Gianluca Mussetti & Sonia Seneviratne & Christine Bürgi & Edouard L. Davin, 2021. "The role of urban trees in reducing land surface temperatures in European cities," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    9. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    10. Wenqi Jiang & Yuanyuan Wang & Mengmeng Zhang, 2025. "Exploring the Industrial Heat Island Effects and Key Influencing Factors in the Guangzhou–Foshan Metropolitan Area," Sustainability, MDPI, vol. 17(8), pages 1-22, April.
    11. Yuxiang Li & Jens-Christian Svenning & Weiqi Zhou & Kai Zhu & Jesse F. Abrams & Timothy M. Lenton & William J. Ripple & Zhaowu Yu & Shuqing N. Teng & Robert R. Dunn & Chi Xu, 2024. "Green spaces provide substantial but unequal urban cooling globally," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Aerzuna Abulimiti & Yongqiang Liu & Lianmei Yang & Abuduwaili Abulikemu & Yusuyunjiang Mamitimin & Shuai Yuan & Reifat Enwer & Zhiyi Li & Abidan Abuduaini & Zulipina Kadier, 2024. "Urbanization Effect on Changes in Extreme Climate Events in Urumqi, China, from 1976 to 2018," Land, MDPI, vol. 13(3), pages 1-25, February.
    13. Conghong Huang & Yan Tang & Yiyang Wu & Yu Tao & Muwu Xu & Nan Xu & Mingze Li & Xiaodan Liu & Henghui Xi & Weixin Ou, 2024. "Assessing Long-Term Thermal Environment Change with Landsat Time-Series Data in a Rapidly Urbanizing City in China," Land, MDPI, vol. 13(2), pages 1-15, February.
    14. Kaustubh Anil Salvi & Mukesh Kumar, 2024. "Imprint of urbanization on snow precipitation over the continental USA," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Alireza Karimi & Pir Mohammad & Antonio García-Martínez & David Moreno-Rangel & Darya Gachkar & Sadaf Gachkar, 2023. "New developments and future challenges in reducing and controlling heat island effect in urban areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10485-10531, October.
    16. Mehmet Cetin & Mehtap Ozenen Kavlak & Muzeyyen Anil Senyel Kurkcuoglu & Gulsah Bilge Ozturk & Saye Nihan Cabuk & Alper Cabuk, 2024. "Determination of land surface temperature and urban heat island effects with remote sensing capabilities: the case of Kayseri, Türkiye," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(6), pages 5509-5536, April.
    17. Ziyang Ma & Huyan Fu & Jianghai Wen & Zhiru Chen, 2024. "Evaluating Urban Heat Island Effects in the Southwestern Plateau of China: A Comparative Analysis of Nine Estimation Methods," Land, MDPI, vol. 14(1), pages 1-26, December.
    18. Huihui Wang & Yunsong Yang & Suru Liu & Hanyu Xue & Tingting Xu & Wanlin He & Xiaoyong Gao & Ruifeng Jiang, 2024. "Unveiling the Coupling Coordination and Interaction Mechanism between the Local Heat Island Effect and Urban Resilience in China," Sustainability, MDPI, vol. 16(6), pages 1-28, March.
    19. Jiayue Xu & Le Xuan & Cong Li & Mengxue Zhang & Xuhui Wang, 2025. "Exploring the Impact of Architectural Landscape Characteristics of Urban Functional Areas in Xi’an City on the Thermal Environment in Summer Using Explainable Machine Learning," Sustainability, MDPI, vol. 17(14), pages 1-27, July.
    20. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1393-:d:1693242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.