IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1117-d1441086.html
   My bibliography  Save this article

How to Plan Urban Parks and the Surrounding Buildings to Maximize the Cooling Effect: A Case Study in Xi’an, China

Author

Listed:
  • Tianji Wu

    (College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Xianyang 712100, China)

  • Xuhui Wang

    (College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Xianyang 712100, China)

  • Le Xuan

    (College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Xianyang 712100, China)

  • Zhaoyang Yan

    (College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Xianyang 712100, China)

  • Chao Wang

    (Xi’an High-Tech Zone Natural Resources and Planning Bureau, Xi’an 710117, China)

  • Chunlei Du

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yutong Su

    (College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Xianyang 712100, China)

  • Jingya Duan

    (College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Xianyang 712100, China)

  • Kanhua Yu

    (School of Architecture, Chang’an University, Xi’an 710055, China)

Abstract

Urban areas with parks tend to have the best outdoor thermal comfort in regions with high urban heat island effects during summer. This study analyzed the synergistic cooling effects of 94 urban parks and the adjacent built-up areas in six districts of Xi’an City using four cooling indicators: park cooling intensity (PCI), park cooling area (PCA), park cooling effect (PCE), and park cooling gradient (PCG). The results showed that 84 out of 94 parks exhibited significant cooling effects, with an average PCI of 1.98 °C, PCA of 51.7 ha, PCE of 6.6, and PCG of 8.2 °C/km. Correlation analyses indicated that the intrinsic park attributes, external buffer zone building height, and building density were the main factors affecting the cooling effect. The park landscape configuration, building height, and density significantly influenced the PCI and PCG, while the park shape and size were crucial for the PCA (positive) and PCE (negative). The optimal park areas for improving the thermal environment were identified as 26 ha (cooling area focus, building density <13%) and 15 ha (cooling intensity focus, building height <21 m, density >32%). This study provides theoretical guidance for planning urban parks and the surrounding areas based on cooling effects, offering insights for future climate resilience planning.

Suggested Citation

  • Tianji Wu & Xuhui Wang & Le Xuan & Zhaoyang Yan & Chao Wang & Chunlei Du & Yutong Su & Jingya Duan & Kanhua Yu, 2024. "How to Plan Urban Parks and the Surrounding Buildings to Maximize the Cooling Effect: A Case Study in Xi’an, China," Land, MDPI, vol. 13(8), pages 1-16, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1117-:d:1441086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    2. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    3. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    4. Soumya Satyakanta Sethi & V. Vinoj & Partha Pratim Gogoi & Kiranmayi Landu & Debadatta Swain & U. C. Mohanty, 2024. "Spatio-temporal evolution of surface urban heat island over Bhubaneswar-Cuttack twin city: a rapidly growing tropical urban complex in Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15381-15402, June.
    5. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    6. Marie De Groeve & Eda Kale & Scott Allan Orr & Tim De Kock, 2023. "Preliminary Experimental Laboratory Methods to Analyse the Insulation Capacity of Vertical Greening on Temperature and Relative Humidity," Sustainability, MDPI, vol. 15(15), pages 1-13, July.
    7. Lin Ma & Yueyao Wang & Ze Liang & Jiaqi Ding & Jiashu Shen & Feili Wei & Shuangcheng Li, 2021. "Changing Effect of Urban Form on the Seasonal and Diurnal Variations of Surface Urban Heat Island Intensities (SUHIIs) in More Than 3000 Cities in China," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    8. W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
    9. Hassan Saeed Khan & Riccardo Paolini & Mattheos Santamouris & Peter Caccetta, 2020. "Exploring the Synergies between Urban Overheating and Heatwaves (HWs) in Western Sydney," Energies, MDPI, vol. 13(2), pages 1-17, January.
    10. Molitor, David & White, Corey, 2024. "Do cities mitigate or exacerbate environmental damages to health?," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    11. Seungwon Kang & Dalbyul Lee & Jiyong Park & Juchul Jung, 2022. "Exploring Urban Forms Vulnerable to Urban Heat Islands: A Multiscale Analysis," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    12. Xing Li & Cuicui Cao & Chang Liu & Wenhao He & Kaibo Wu & Yang Wang & Borui Xu & Ziao Tian & Enming Song & Jizhai Cui & Gaoshan Huang & Changlin Zheng & Zengfeng Di & Xun Cao & Yongfeng Mei, 2022. "Self-rolling of vanadium dioxide nanomembranes for enhanced multi-level solar modulation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Wei Song & Xiangzheng Deng, 2015. "Effects of Urbanization-Induced Cultivated Land Loss on Ecosystem Services in the North China Plain," Energies, MDPI, vol. 8(6), pages 1-16, June.
    14. Lingyi Ouyang & Hao Guo & Xiujin Song & Tingting Hong, 2025. "Spatial Impact Dynamics of the “Mountain–City–Sea” Pattern on the Urban Thermal Environment and Adaptive Zoning Regulation," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
    15. Ainhoa Arriazu-Ramos & Jesús Miguel Santamaría & Aurora Monge-Barrio & Maira Bes-Rastrollo & Sonia Gutierrez Gabriel & Nuria Benito Frias & Ana Sánchez-Ostiz, 2025. "Health Impacts of Urban Environmental Parameters: A Review of Air Pollution, Heat, Noise, Green Spaces and Mobility," Sustainability, MDPI, vol. 17(10), pages 1-22, May.
    16. Djacinto Monteiro dos Santos & Renata Libonati & Beatriz N Garcia & João L Geirinhas & Barbara Bresani Salvi & Eliane Lima e Silva & Julia A Rodrigues & Leonardo F Peres & Ana Russo & Renata Gracie & , 2024. "Twenty-first-century demographic and social inequalities of heat-related deaths in Brazilian urban areas," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-30, January.
    17. Anamika Shreevastava & Glynn Hulley & Sai Prasanth & TC Chakraborty & Diego Ramos Aguilera & Kelly Twomey Sanders & Yi Yin, 2025. "Contemporary income inequality outweighs historic redlining in shaping intra-urban heat disparities in Los Angeles," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. Weiwen Wang & Wen Zhou & Edward Yan Yung Ng & Yong Xu, 2016. "Urban heat islands in Hong Kong: statistical modeling and trend detection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 885-907, September.
    19. Jean-Francois Bastin & Emily Clark & Thomas Elliott & Simon Hart & Johan van den Hoogen & Iris Hordijk & Haozhi Ma & Sabiha Majumder & Gabriele Manoli & Julia Maschler & Lidong Mo & Devin Routh & Kail, 2019. "Understanding climate change from a global analysis of city analogues," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-13, July.
    20. Jing Kong & Yongling Zhao & Jan Carmeliet & Chengwang Lei, 2021. "Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale," Sustainability, MDPI, vol. 13(19), pages 1-26, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1117-:d:1441086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.