IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i6d10.1007_s11069-024-06431-5.html
   My bibliography  Save this article

Determination of land surface temperature and urban heat island effects with remote sensing capabilities: the case of Kayseri, Türkiye

Author

Listed:
  • Mehmet Cetin

    (Ondokuz Mayis University)

  • Mehtap Ozenen Kavlak

    (Eskisehir Technical University)

  • Muzeyyen Anil Senyel Kurkcuoglu

    (Middle East Technical University)

  • Gulsah Bilge Ozturk

    (Ordu University)

  • Saye Nihan Cabuk

    (Eskisehir Technical University)

  • Alper Cabuk

    (Eskisehir Technical University)

Abstract

Kayseri, a densely urbanized province in Türkiye, grapples with pressing challenges of air pollution and limited green spaces, accentuating the need for strategic urban planning. This study, utilizing Landsat 8 and Landsat 9 satellite imagery, investigates the evolution of land surface temperatures (LST) and urban heat island (UHI) effects in key districts—Kocasinan, Melikgazi, Talas, and Hacılar—between 2013 and 2022. This research has been complemented with an analysis of the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Built-Up Index (NDBI), exploring correlations among the LST, UHI, NDVI, and NDBI changes. The findings indicate that a significant portion (65% and 88%) of the study area remained unchanged with respect to the NDVI and NDBI differences. This research’s findings reveal that a substantial portion (65% and 88%) of the study area exhibited consistency in the NDVI and NDBI. Noteworthy increases in the NDVI were observed in 20% of the region, while only 4% exhibited higher NDBI. Strikingly, the UHI displayed strong negative correlations with the NDVI and robust positive correlations with the NDBI. The LST changes demonstrated a reduced temperature range, from 21 to 51 °C in 2013, to 18 to 40 °C in 2022. Localized environmental factors, notably at the National Garden site, showcased the most significant temperature variations. Notably, the UHI exhibited strong negative correlations with the NDVI and strong positive correlations with the NDBI. The study’s results emphasize the interplay among the NDBI, LST, and UHI and an inverse relationship with the NDVI and NDBI, LST, and UHI. These findings hold implications for urban planning and policymaking, particularly in the context of resilient and sustainable land use planning and the UHI mitigation. This research underscores the intricate interplay among the NDBI, LST, and UHI, highlighting an inverse relationship with the NDVI. These findings hold crucial implications for resilient and sustainable urban planning, particularly in mitigating the UHI effects. Despite limited vacant spaces in Kayseri, geospatial techniques for identifying potential green spaces can facilitate swift UHI mitigation measures. Acknowledging Kayseri’s complex dynamics, future research should delve into the UHI responses to urban morphology and design, extending this methodology to analyze the UHI effects in other Turkish cities. This research contributes to a broader understanding of UHI dynamics and sustainable urban planning practices, offering valuable insights for policymakers, urban planners, and researchers alike.

Suggested Citation

  • Mehmet Cetin & Mehtap Ozenen Kavlak & Muzeyyen Anil Senyel Kurkcuoglu & Gulsah Bilge Ozturk & Saye Nihan Cabuk & Alper Cabuk, 2024. "Determination of land surface temperature and urban heat island effects with remote sensing capabilities: the case of Kayseri, Türkiye," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(6), pages 5509-5536, April.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:6:d:10.1007_s11069-024-06431-5
    DOI: 10.1007/s11069-024-06431-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06431-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06431-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Iman Rousta & Md Omar Sarif & Rajan Dev Gupta & Haraldur Olafsson & Manjula Ranagalage & Yuji Murayama & Hao Zhang & Terence Darlington Mushore, 2018. "Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018)," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    2. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    3. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    4. Darren How Jin Aik & Mohd Hasmadi Ismail & Farrah Melissa Muharam, 2020. "Land Use/Land Cover Changes and the Relationship with Land Surface Temperature Using Landsat and MODIS Imageries in Cameron Highlands, Malaysia," Land, MDPI, vol. 9(10), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baldi, Lucia & Trentinaglia, Maria Teresa & Thrassou, Alkis & Galati, Antonino, 2025. "Growing green: Exploring the drivers of citizens’ participation in Italian urban and peri-urban forestation governance," Land Use Policy, Elsevier, vol. 148(C).
    2. Yaoyun Zhang & Ge Shi & Ziying Feng & Entao Zheng & Chuang Chen & Xinyu Li & Difan Yu & Yunpeng Zhang, 2025. "Study on the Relationship Between 3D Landscape Patterns and Residents’ Comfort in Urban Multi-Unit High-Rise Residential Areas: A Case Study of High-Density Inland City," Sustainability, MDPI, vol. 17(10), pages 1-32, May.
    3. Dino Bečić & Mateo Gašparović, 2025. "Urban Heat Islands and Land-Use Patterns in Zagreb: A Composite Analysis Using Remote Sensing and Spatial Statistics," Land, MDPI, vol. 14(7), pages 1-26, July.
    4. Hu, Miao & Bian, Yongtao & Ji, Guangxing, 2025. "Assessing the sustainability of China's coastal regions: A perspective on local coupling and telecoupling," Ecological Modelling, Elsevier, vol. 501(C).
    5. Jiang, Yaoyao & Li, Hengkai & Zhang, Zhiwei & Ren, Guogang & Zhang, Jianying, 2025. "Enhancing ecological sustainability in ion-adsorption rare earth mining areas: A multi-scale model for assessing spatiotemporal dynamics and ecological resilience," Ecological Modelling, Elsevier, vol. 502(C).
    6. Jinjian Jiang & Jie Zhang & Peng Cui & Xiaoxue Luo, 2025. "Influence Mechanism of Land Use/Cover Change on Surface Urban Heat Islands and Urban Energy Consumption in Severely Cold Regions," Land, MDPI, vol. 14(6), pages 1-32, May.
    7. Ali Mansouri & Abdolmajid Erfani, 2025. "Machine Learning Prediction of Urban Heat Island Severity in the Midwestern United States," Sustainability, MDPI, vol. 17(13), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Li & Lina Zhao & Hao Zheng & Xiaozhou Yang, 2025. "Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design," Land, MDPI, vol. 14(7), pages 1-32, July.
    2. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    3. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    4. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    5. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    6. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    7. Donghe Li & Xin Hu & John Rollo & Mark Luther & Min Lu & Chunlu Liu, 2025. "Spatial Cluster Characteristics of Land Surface Temperatures," Sustainability, MDPI, vol. 17(6), pages 1-24, March.
    8. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    9. Li, Ruibin & Zhao, Yi & Chang, Min & Zeng, Fanxing & Wu, Yan & Wang, Liangzhu (Leon) & Niu, Jianlei & Shi, Xing & Gao, Naiping, 2024. "Numerical simulation methods of tree effects on microclimate: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    10. Wafaa Majeed Mutashar Al-Hameedi & Jie Chen & Cheechouyang Faichia & Biswajit Nath & Bazel Al-Shaibah & Ali Al-Aizari, 2022. "Geospatial Analysis of Land Use/Cover Change and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and ANN Models," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
    11. Auwalu Faisal Koko & Yue Wu & Ghali Abdullahi Abubakar & Akram Ahmed Noman Alabsi & Roknisadeh Hamed & Muhammed Bello, 2021. "Thirty Years of Land Use/Land Cover Changes and Their Impact on Urban Climate: A Study of Kano Metropolis, Nigeria," Land, MDPI, vol. 10(11), pages 1-27, October.
    12. Shaojing Jiang, 2023. "Compound Heat Vulnerability in the Record-Breaking Hot Summer of 2022 over the Yangtze River Delta Region," IJERPH, MDPI, vol. 20(8), pages 1-15, April.
    13. Yuanfan Zheng & Liang Chen & Haipeng Zhao, 2024. "Assessing Building Energy Savings and the Greenhouse Gas Mitigation Potential of Green Roofs in Shanghai Using a GIS-Based Approach," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
    14. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    15. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    16. Francisco Estrada & Veronica Lupi & W. J. Wouter Botzen & Richard S. J. Tol, 2025. "Urban and non-urban contributions to the social cost of carbon," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Sánchez-Guevara Sánchez, Carmen & Sanz Fernández, Ana & Núñez Peiró, Miguel & Gómez Muñoz, Gloria, 2020. "Energy poverty in Madrid: Data exploitation at the city and district level," Energy Policy, Elsevier, vol. 144(C).
    18. Olivia J. Keenan & Aalayna R. Green & Alexander R. Young & Sarah R. Young & Daniel S. W. Katz & David L. Miller & Wenna Xi & Fiona Lo & Evelyn Ortiz & Glenn McMillan & Curtis L. Archer & Arnab K. Ghos, 2025. "Exploring Community Co-Creation in Tree Planting and Heat-Related Health Interventions: A Qualitative Study," IJERPH, MDPI, vol. 22(6), pages 1-23, June.
    19. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    20. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:6:d:10.1007_s11069-024-06431-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.