IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v57y2011i2p267-278.html
   My bibliography  Save this article

Flood, drought and typhoon disasters during the last half-century in the Guangdong province, China

Author

Listed:
  • Qiang Zhang
  • Wei Zhang
  • Yongqin Chen
  • Tao Jiang

Abstract

In this paper, we present the changing properties of losses due to occurrences of droughts, floods and typhoon disasters in the Guangdong province, a comparatively economically prosperous province in the south China. Influences of typhoon activities on droughts and floods are also analysed. Results based on extensive and thorough investigations indicate that (1) generally, Guangdong province is both humid and warm; however, in recent decades, the negative impacts of droughts seem to be enhancing, which is proved by increasing drought-induced economic loss. In this sense, considerable importance should be attached to droughts, but not solely to floods, in the Guangdong province; (2) low-lying terrain of the Guangdong province makes this region easy to be influenced by flood inundation. Moreover, highly urbanized areas are mostly located in the low-lying areas. Flood-induced loss was increasing before 1990s and is decreasing after 1990s, and this should be attributed mainly to seasonal shifts of precipitation changes and enhancing human mitigation to flood disasters; (3) typhoon activities often inflict considerable loss on the economy of the Guangdong province. Moreover, flood events in the study region are mostly the results of typhoon activities. Flash floods, strong wind and storm surge accompanying typhoon activities are the major factors intensifying the negative impacts of the typhoon disasters. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Qiang Zhang & Wei Zhang & Yongqin Chen & Tao Jiang, 2011. "Flood, drought and typhoon disasters during the last half-century in the Guangdong province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 267-278, May.
  • Handle: RePEc:spr:nathaz:v:57:y:2011:i:2:p:267-278
    DOI: 10.1007/s11069-010-9611-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9611-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9611-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fumihiko Imamura & Dang Van To, 1997. "Flood and Typhoon Disasters in Viet Nam in the Half Century Since 1950," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 15(1), pages 71-87, January.
    2. Lung-Sheng Hsieh & Ming-Hsi Hsu & Ming-Hsu Li, 2006. "An Assessment of Structural Measures for Flood-prone Lowlands with High Population Density along the Keelung River in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 37(1), pages 133-152, February.
    3. Yongqiang Zong & Michael Tooley, 2003. "A Historical Record of Coastal Floods in Britain: Frequencies and Associated Storm Tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(1), pages 13-36, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Gan & Yuanyuan Wang & Yusheng Wang & Benjamin Lev & Wenjing Shen & Wen Jiang, 2021. "Coupling coordination analysis with data-driven technology for disaster–economy–ecology system: an empirical study in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2123-2153, July.
    2. Rongrong Xu & Yongxiang Wu & Ming Chen & Xuan Zhang & Wei Wu & Long Tan & Gaoxu Wang & Yi Xu & Bing Yan & Yuedong Xia, 2019. "Calculation of the contribution rate of China’s hydraulic science and technology based on a feedforward neural network," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    3. Chengjing Nie & Hairong Li & Linsheng Yang & Shaohong Wu & Yi Liu & Yongfeng Liao, 2012. "Spatial and temporal changes in flooding and the affecting factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 425-439, March.
    4. Jiayang Zhang & Yangbo Chen, 2019. "Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    5. Ying Xu & Christopher Findlay, 2019. "Farmers’ constraints, governmental support and climate change adaptation: evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 866-880, October.
    6. Jelena M. Andrić & Da-Gang Lu, 2017. "Fuzzy probabilistic seismic hazard analysis with applications to Kunming city, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1031-1057, December.
    7. Geng, Ruiying & Liu, Xin & Lv, Xin & Gao, Zhiqiang & Xu, Ning, 2021. "Comparing cost-effectiveness of paddy fields and seawalls for coastal protection to reduce economic damage of typhoons in China," Ecosystem Services, Elsevier, vol. 47(C).
    8. Xinliang Xu & Daowei Sun & Tengjiao Guo, 2015. "A systemic analysis of typhoon risk across China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 461-477, May.
    9. Chun-Ling Liu & Qiang Zhang & Vijay Singh & Ying Cui, 2011. "Copula-based evaluations of drought variations in Guangdong, South China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1533-1546, December.
    10. Yanxu Liu & Shuangshuang Li & Yanglin Wang & Tian Zhang & Jian Peng & Tianyi Li, 2015. "Identification of multiple climatic extremes in metropolis: a comparison of Guangzhou and Shenzhen, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 939-953, November.
    11. Yui-Yip Lau & Tsz-Leung Yip & Maxim A. Dulebenets & Yuk-Ming Tang & Tomoya Kawasaki, 2022. "A Review of Historical Changes of Tropical and Extra-Tropical Cyclones: A Comparative Analysis of the United States, Europe, and Asia," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    12. Yanyu Zhang & Shuying Zang & Xiangjin Shen & Gaohua Fan, 2021. "Observed Changes of Rain-Season Precipitation in China from 1960 to 2018," IJERPH, MDPI, vol. 18(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nanda Khoirunisa & Cheng-Yu Ku & Chih-Yu Liu, 2021. "A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    2. Tsung-Yi Pan & Lung-Yao Chang & Jihn-Sung Lai & Hsiang-Kuan Chang & Cheng-Shang Lee & Yih-Chi Tan, 2014. "Coupling typhoon rainfall forecasting with overland-flow modeling for early warning of inundation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1763-1793, February.
    3. Bam Razafindrabe & Ryohei Kada & Makoto Arima & Shoji Inoue, 2014. "Analyzing flood risk and related impacts to urban communities in central Vietnam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(2), pages 177-198, February.
    4. Dawson, David & Shaw, Jon & Roland Gehrels, W., 2016. "Sea-level rise impacts on transport infrastructure: The notorious case of the coastal railway line at Dawlish, England," Journal of Transport Geography, Elsevier, vol. 51(C), pages 97-109.
    5. Timsina, J. & Buresh, R.J. & Dobermann, A. & Dixon, J. (ed.), 2011. "Rice-maize systems in Asia: current situation and potential," IRRI Books, International Rice Research Institute (IRRI), number 164490.
    6. Deuchert, Eva & Felfe, Christina, 2015. "The tempest: Short- and long-term consequences of a natural disaster for children׳s development," European Economic Review, Elsevier, vol. 80(C), pages 280-294.
    7. Weiping Lou & Haiyan Chen & Xiaoling Shen & Ke Sun & Shengrong Deng, 2012. "Fine assessment of tropical cyclone disasters based on GIS and SVM in Zhejiang Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 511-529, October.
    8. Thomas Prime & Jennifer M Brown & Andrew J Plater, 2015. "Physical and Economic Impacts of Sea-Level Rise and Low Probability Flooding Events on Coastal Communities," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-28, February.
    9. Cheol-Hee Son & Jong-In Baek & Yong-Un Ban & Sung-Ryong Ha, 2015. "The Effects of Mitigation Measures on Flood Damage Prevention in Korea," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    10. Chen Cao & Peihua Xu & Yihong Wang & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    11. Nguyen, Thanh Cong & Robinson, Jackie & Kaneko, Shinji & Komatsu, Satoru, 2013. "Estimating the value of economic benefits associated with adaptation to climate change in a developing country: A case study of improvements in tropical cyclone warning services," Ecological Economics, Elsevier, vol. 86(C), pages 117-128.
    12. Eva Deuchert & Christina Felfe, 2013. "The Tempest: Natural Disasters, Early Shocks and Children's Short- and Long-Run Development," CESifo Working Paper Series 4168, CESifo.
    13. Shang-Shu Shih & Sheng-Chi Yang & Huei-Tau Ouyang, 2014. "Anthropogenic effects and climate change threats on the flood diversion of Erchung Floodway in Tanshui River, northern Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1733-1747, September.
    14. Déborah Idier & Jérémy Rohmer & Rodrigo Pedreros & Sylvestre Roy & Jérome Lambert & Jessie Louisor & Gonéri Cozannet & Erwan Cornec, 2020. "Coastal flood: a composite method for past events characterisation providing insights in past, present and future hazards—joining historical, statistical and modelling approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 465-501, March.
    15. Wen-Cheng Liu & Chung-Yi Wu, 2011. "Flash flood routing modeling for levee-breaks and overbank flows due to typhoon events in a complicated river system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1057-1076, September.
    16. Esteban, Miguel & Zhang, Qi & Longarte-Galnares, Gorka, 2012. "Cost-benefit analysis of a green electricity system in Japan considering the indirect economic impacts of tropical cyclones," Energy Policy, Elsevier, vol. 43(C), pages 49-57.
    17. Yu-Shou Su, 2016. "Urban Flood Resilience in New York City, London, Randstad, Tokyo, Shanghai, and Taipei," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 6(1), pages 92-108, March.
    18. Ju-Liang Jin & Jian Cheng & Yi-Ming Wei, 2008. "Forecasting flood disasters using an accelerated genetic algorithm: Examples of two case studies for China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(1), pages 85-92, January.
    19. Wei-ping Lou & Hai-yan Chen & Xin-fa Qiu & Qi-yi Tang & Feng Zheng, 2012. "Assessment of economic losses from tropical cyclone disasters based on PCA-BP," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 819-829, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:57:y:2011:i:2:p:267-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.