IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i4d10.1007_s11069-023-06369-0.html
   My bibliography  Save this article

Assessing the unexpectedness of a very large observed rainfall event in the metropolitan region of Belo Horizonte, Brazil

Author

Listed:
  • Veber Costa

    (Federal University of Minas Gerais)

  • Júlio Sampaio

    (Federal University of Minas Gerais)

  • Wilson Fernandes

    (Federal University of Minas Gerais)

  • Gabriel Neiva

    (Federal University of Minas Gerais)

Abstract

Exceptionally large realizations of hydrometeorological variables summarize our knowledge on the underlying processes under extreme conditions. However, the formal probabilistic modeling of record-breaking precipitation and flooding events has received limited attention from researchers and practitioners, particularly with respect to estimation of the future behavior of the variable of interest once a large magnitude event is observed. This paper discusses the use of the two-parameter Rayleigh distribution for describing the dynamics of record-breaking precipitation events, as well as predicting the distributions of future realizations of the process, on the basis of the theory of records. The main motivation for this study was an unprecedented precipitation event which accumulated 186 mm in 3 h—almost twice the previous record—and caused severe damage in the city of Belo Horizonte, in the Brazilian state of Minas Gerais. Our results suggested that, before observing this large magnitude event, the evolution of record-breaking precipitation amounts is properly captured by the model. However, this exceptional event was severely underestimated during prediction—the model estimate was more than 80 mm smaller than the observed rainfall amount. On the other hand, the inclusion of this event in inference entailed a lack of fit of the model and strongly disrupted the dynamics of previous record events, which further highlighted the difficulties of dealing with such unexpected large observations of hydrometeorological variables even under theoretically sound mathematical frameworks.

Suggested Citation

  • Veber Costa & Júlio Sampaio & Wilson Fernandes & Gabriel Neiva, 2024. "Assessing the unexpectedness of a very large observed rainfall event in the metropolitan region of Belo Horizonte, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3979-3994, March.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06369-0
    DOI: 10.1007/s11069-023-06369-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06369-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06369-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Robert Shcherbakov, 2023. "Statistics of Weibull Record-Breaking Events," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
    2. Jung In Seo & Yongku Kim, 2017. "Objective Bayesian analysis based on upper record values from two-parameter Rayleigh distribution with partial information," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2222-2237, September.
    3. Pishgar-Komleh, S.H. & Keyhani, A. & Sefeedpari, P., 2015. "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 313-322.
    4. Grigoriy Volovskiy & Udo Kamps, 2020. "Maximum observed likelihood prediction of future record values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1072-1097, December.
    5. Cristiano Villa, 2017. "Bayesian estimation of the threshold of a generalised pareto distribution for heavy-tailed observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 95-118, March.
    6. Christina Empacher & Udo Kamps & Grigoriy Volovskiy, 2023. "Statistical Prediction of Future Sports Records Based on Record Values," Stats, MDPI, vol. 6(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingzhi Wang & Jun Liu & Fucai Qian, 2019. "A New Modeling Approach for the Probability Density Distribution Function of Wind power Fluctuation," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
    2. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    3. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    4. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Xu, Jin & Kanyingi, Peter Kairu & Wang, Keyou & Li, Guojie & Han, Bei & Jiang, Xiuchen, 2017. "Probabilistic small signal stability analysis with large scale integration of wind power considering dependence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1258-1270.
    6. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    7. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2020. "Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters," Renewable Energy, Elsevier, vol. 161(C), pages 1092-1109.
    8. Youssef Kassem & Hüseyin Çamur & Ramzi Aateg Faraj Aateg, 2020. "Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libya," Energies, MDPI, vol. 13(14), pages 1-29, July.
    9. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    10. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev & Ekaterina Andriushchenko, 2021. "Comparison of Flux-Switching and Interior Permanent Magnet Synchronous Generators for Direct-Driven Wind Applications Based on Nelder–Mead Optimal Designing," Mathematics, MDPI, vol. 9(7), pages 1-16, March.
    11. Miao, Shuwei & Yang, Hejun & Gu, Yingzhong, 2018. "A wind vector simulation model and its application to adequacy assessment," Energy, Elsevier, vol. 148(C), pages 324-340.
    12. Li, Delei & Geyer, Beate & Bisling, Peter, 2016. "A model-based climatology analysis of wind power resources at 100-m height over the Bohai Sea and the Yellow Sea," Applied Energy, Elsevier, vol. 179(C), pages 575-589.
    13. Lidong Zhang & Qikai Li & Yuanjun Guo & Zhile Yang & Lei Zhang, 2018. "An Investigation of Wind Direction and Speed in a Featured Wind Farm Using Joint Probability Distribution Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    14. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    15. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    16. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.
    17. Wais, Piotr, 2017. "Two and three-parameter Weibull distribution in available wind power analysis," Renewable Energy, Elsevier, vol. 103(C), pages 15-29.
    18. Bagci, Kubra & Arslan, Talha & Celik, H. Eray, 2021. "Inverted Kumarswamy distribution for modeling the wind speed data: Lake Van, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Zheng, Yi & You, Shi & Bindner, Henrik W. & Münster, Marie, 2022. "Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal–electric properties and state-transitional dynamics," Applied Energy, Elsevier, vol. 307(C).
    20. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06369-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.