IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i3d10.1007_s11069-023-06293-3.html
   My bibliography  Save this article

Characterization and prediction of southwest monsoon rainfall patterns in Central India as a linear state space modeling

Author

Listed:
  • K. V. Narasimha Murthy

    (Madanapalle Institute of Technology & Science)

  • R. Saravana

    (Madanapalle Institute of Technology & Science)

  • K. Vijaya Kumar

    (S. G. S. Arts and Science College)

Abstract

Indian southwest monsoon rainfall has a huge socioeconomic influence, and any changes in monsoon rainfall patterns will have major consequences for agriculture, water supplies, and other connected sectors of economy. The paper explores the charactering and forecasting of the southwest monsoon rainfall (June to September) patterns over the Central region of India for the period (1901–2021: 121 years) using linear state space modeling. The study period is split into two periods, i.e., earlier period (EP: 1901–1950) and the recent period (RP: 1951–2021). The linear state space model (LSSM) with significant latent components such as trend, seasonal, periodic and random variations or noise is selected for modeling the southwest monsoon rainfall (SWMR) based on Bayesian information criteria (BIC) and statistical fit for the two periods. The result indicates that an increase in linear time trend during the EP and the RP has a decreasing local linear time trend in SWMR, and it is interesting to notice that the EP had no noteworthy periodic variations, whereas the RP exhibits significant periodic variations in SWMR. Further, the selected LSSM forecasts SWMR patterns for the period 2022–2028, and it has been observed that the Central Indian region is expected to receive substantial rainfall in the years 2026, 2027 and 2028.

Suggested Citation

  • K. V. Narasimha Murthy & R. Saravana & K. Vijaya Kumar, 2024. "Characterization and prediction of southwest monsoon rainfall patterns in Central India as a linear state space modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2553-2569, February.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06293-3
    DOI: 10.1007/s11069-023-06293-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06293-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06293-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    2. D. Pattanaik, 2007. "Analysis of Rainfall Over Different Homogeneous Regions of India in Relation to Variability in Westward Movement Frequency of Monsoon Depressions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(3), pages 635-646, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    2. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    3. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    4. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    5. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    6. Tomoya Mori & Daisuke Murakami, 2025. "Sustainability of cities under declining population and decreasing distance frictions: The case of Japan," KIER Working Papers 1117, Kyoto University, Institute of Economic Research.
    7. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    8. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    9. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    10. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    11. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    12. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    13. repec:spo:wpmain:info:hdl:2441/1904 is not listed on IDEAS
    14. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    15. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
    16. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    17. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    18. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    19. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    20. Bowen Fu & Mengheng Li & Qazi Haque, 2025. "Exchange Rates, Uncovered Interest Parity, and Time‐Varying Fama Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(3), pages 310-324, April.
    21. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    22. Bógalo, Juan & Poncela, Pilar & Senra, Eva, 2017. "Automatic Signal Extraction for Stationary and Non-Stationary Time Series by Circulant SSA," MPRA Paper 76023, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06293-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.