IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i11d10.1007_s11069-024-06596-z.html
   My bibliography  Save this article

Classification machine learning models for urban flood hazard mapping: case study of Zaio, NE Morocco

Author

Listed:
  • Maelaynayn El baida

    (Mohamed 1st University)

  • Farid Boushaba

    (Mohamed 1st University)

  • Mimoun Chourak

    (Mohammed 1st University)

  • Mohamed Hosni

    (Moulay Ismail University)

  • Hichame Sabar

    (Mohammed 1st University)

Abstract

Floods have become increasingly frequent and devastating in recent decades, posing unignorable risks as highly destructive natural hazards. To effectively manage and mitigate these risks, accurate flood hazard mapping is crucial. Machine learning models have emerged as valuable approaches for flood hazard assessment. In this study, six machine learning (ML) models, including Maximum Entropy, Support Vector Machine, Extreme Gradient Boosting (XGB), Random Forest (RF), multi-layer perceptron, and Naive Bayes, were utilized to evaluate urban flood hazard in Zaio, NE Morocco, and estimate the flood presence extent. Nine flood conditioning factors were used as input variables. Historical flood presence and absence data were employed for models training and testing, incorporating 663 flood presence and absence locations dating back to past flood events. Performance evaluation metrics such as Kappa statistic, accuracy, sensitivity, specificity, and area under the curve (AUC) were calculated for each model. RF (AUC = 0.92) and XGB (AUC = 0.9) models showed excellent classification capabilities, surpassing the performance of the other models, while the other models exhibited lower but recognizable performances. Additionally, the hazard presence extent maps generated by the ML models exhibited a decent alignment with a historical flood event maps created by the hydrodynamic and the cellular automata models. The results imply that ML models offer effective solutions for mapping urban flood hazards. The innovative integration of various ensemble and single ML models demonstrates their potential in urban flood hazard susceptibility and extent mapping, effectively surpassing the limitations associated with limited availability of hydrologic/hydraulic data and computational burden. These mapped results can be instrumental for local authorities in shaping mitigation strategies in the city of Zaio.

Suggested Citation

  • Maelaynayn El baida & Farid Boushaba & Mimoun Chourak & Mohamed Hosni & Hichame Sabar, 2024. "Classification machine learning models for urban flood hazard mapping: case study of Zaio, NE Morocco," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10013-10041, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06596-z
    DOI: 10.1007/s11069-024-06596-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06596-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06596-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    2. Sadhan Malik & Subodh Chandra Pal & Alireza Arabameri & Indrajit Chowdhuri & Asish Saha & Rabin Chakrabortty & Paramita Roy & Biswajit Das, 2021. "GIS-based statistical model for the prediction of flood hazard susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16713-16743, November.
    3. Mahya Norallahi & Hesam Seyed Kaboli, 2021. "Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 119-137, March.
    4. Galateia Terti & Isabelle Ruin & Jonathan J. Gourley & Pierre Kirstetter & Zachary Flamig & Juliette Blanchet & Ami Arthur & Sandrine Anquetin, 2019. "Toward Probabilistic Prediction of Flash Flood Human Impacts," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 140-161, January.
    5. Boyu Feng & Ying Zhang & Robin Bourke, 2021. "Urbanization impacts on flood risks based on urban growth data and coupled flood models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 613-627, March.
    6. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    7. Sutao Song & Zhichao Zhan & Zhiying Long & Jiacai Zhang & Li Yao, 2011. "Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    8. Preeti Ramkar & Sanjaykumar M. Yadav, 2021. "Flood risk index in data-scarce river basins using the AHP and GIS approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1119-1140, October.
    9. Martin Kabenge & Joshua Elaru & Hongtao Wang & Fengting Li, 2017. "Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1369-1387, December.
    10. Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
    11. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    12. Halit Enes Aydin & Muzaffer Can Iban, 2023. "Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms with SHapley Additive exPlanations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2957-2991, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maelaynayn El baida & Mohamed Hosni & Farid Boushaba & Mimoun Chourak, 2024. "A Systematic Literature Review on Classification Machine Learning for Urban Flood Hazard Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5823-5864, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    6. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    7. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    8. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    9. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    10. Yi Cao & Xue Li, 2022. "Multi-Model Attention Fusion Multilayer Perceptron Prediction Method for Subway OD Passenger Flow under COVID-19," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    11. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    12. Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.
    13. Jorge Antunes & Peter Wanke & Thiago Fonseca & Yong Tan, 2023. "Do ESG Risk Scores Influence Financial Distress? Evidence from a Dynamic NDEA Approach," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    14. Lyudmyla Kirichenko & Tamara Radivilova & Vitalii Bulakh, 2018. "Machine Learning in Classification Time Series with Fractal Properties," Data, MDPI, vol. 4(1), pages 1-13, December.
    15. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    16. José A. Ferreira, 2022. "Models under which random forests perform badly; consequences for applications," Computational Statistics, Springer, vol. 37(4), pages 1839-1854, September.
    17. Villacis, Alexis & Badruddoza, Syed & Mayorga, Joaquin & Mishra, Ashok K., 2022. "Using Machine Learning to Test the Consistency of Food Insecurity Measures," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322472, Agricultural and Applied Economics Association.
    18. Valeria D’Amato & Rita D’Ecclesia & Susanna Levantesi, 2022. "ESG score prediction through random forest algorithm," Computational Management Science, Springer, vol. 19(2), pages 347-373, June.
    19. Pourkhanali, Armin & Khezr, Peyman & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Navigating the crisis: Fuel price caps in the Australian national wholesale electricity market," Energy Economics, Elsevier, vol. 129(C).
    20. Raman Pall & Yvan Gauthier & Sofia Auer & Walid Mowaswes, 2023. "Predicting drug shortages using pharmacy data and machine learning," Health Care Management Science, Springer, vol. 26(3), pages 395-411, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06596-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.