IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i1d10.1007_s11069-021-04871-x.html
   My bibliography  Save this article

Flood risk index in data-scarce river basins using the AHP and GIS approach

Author

Listed:
  • Preeti Ramkar

    (Sardar Vallabhbhai National Institute of Technology)

  • Sanjaykumar M. Yadav

    (Sardar Vallabhbhai National Institute of Technology)

Abstract

The flood risk assessment study is an important factor in order to identify the critical or high-risk zone areas. This research intends to develop a flood risk index map of data-scare river basins using an integrated approach of Geospatial technique and Multiple Criteria Decision-Making Technique (MCDM). Datasets based on the Analytical Hierarchical Process (AHP) in combination with Geographic Information System (GIS) were used as criteria and sub-criteria. The weights were derived using a questionnaire survey. The flood risk is the degree of exposure to the undesired event, which involves the multiplication of the natural flood hazard factors with highly vulnerable ones. The flood hazard map is developed considering slope, distance from the main river, land use, land cover, soil, drainage density and rainfall. The flood vulnerable index is developed using population density, crop production and density of road–river intersection. The high-risk areas of the river basin were identified using a flood risk map. AHP in combination with the GIS framework can be used as an alternative method for flood inundation or for developing the map of flood-prone zone of data-scarce river basins.

Suggested Citation

  • Preeti Ramkar & Sanjaykumar M. Yadav, 2021. "Flood risk index in data-scarce river basins using the AHP and GIS approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1119-1140, October.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04871-x
    DOI: 10.1007/s11069-021-04871-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04871-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04871-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Awadallah & D. Tabet, 2015. "Estimating flooding extent at high return period for ungauged braided systems using remote sensing: a case study of Cuvelai Basin, Angola," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 255-272, May.
    2. Nimrabanu Memon & Dhruvesh P. Patel & Naimish Bhatt & Samir B. Patel, 2020. "Integrated framework for flood relief package (FRP) allocation in semiarid region: a case of Rel River flood, Gujarat, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 279-311, January.
    3. Martin Kabenge & Joshua Elaru & Hongtao Wang & Fengting Li, 2017. "Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1369-1387, December.
    4. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2011. "Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1261-1276, December.
    5. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingshen Shao & Dong Xu & Yuchao Wang & Ziyi Wang & Xingzhou Liang & Li Li, 2022. "Quantitative evaluation of weathering degree through Fuzzy-AHP method and petrophysics analysis for sandstone carvings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1547-1566, June.
    2. Nikunj K. Mangukiya & Ashutosh Sharma, 2022. "Flood risk mapping for the lower Narmada basin in India: a machine learning and IoT-based framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1285-1304, September.
    3. Budi Heru Santosa & Dwi Nowo Martono & Rachmadhi Purwana & Raldi Hendro Koestoer & Wiwiek Dwi Susanti, 2023. "Understanding household flood resilience in Tangerang, Indonesia, using a composite indicator method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 69-94, October.
    4. Irem Sahmutoglu & Alev Taskin & Ertugrul Ayyildiz, 2023. "Assembly area risk assessment methodology for post-flood evacuation by integrated neutrosophic AHP-CODAS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1071-1103, March.
    5. Saumya Arya & Arun Kumar, 2023. "AHP GIS-aided flood hazard mapping and surface runoff estimation in Gurugram, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2963-2987, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikunj K. Mangukiya & Ashutosh Sharma, 2022. "Flood risk mapping for the lower Narmada basin in India: a machine learning and IoT-based framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1285-1304, September.
    2. Jihye Ha & Jung Eun Kang, 2022. "Assessment of flood-risk areas using random forest techniques: Busan Metropolitan City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2407-2429, April.
    3. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    4. Wen-Chun Lo & Ting-Chi Tsao & Chih-Hao Hsu, 2012. "Building vulnerability to debris flows in Taiwan: a preliminary study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2107-2128, December.
    5. Mohammed Sarfaraz Gani Adnan & Ashraf Dewan & Khatun E. Zannat & Abu Yousuf Md Abdullah, 2019. "The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu river basins of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 425-448, October.
    6. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2016. "Flood damage assessment of an urban area in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1045-1055, September.
    7. Alaa Ahmed & Guna Hewa & Abdullah Alrajhi, 2021. "Flood susceptibility mapping using a geomorphometric approach in South Australian basins," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 629-653, March.
    8. Kazi Faiz Alam & Tofael Ahamed, 2023. "Erosion vulnerable area assessment of Jamuna River system in Bangladesh using a multi-criteria-based geospatial fuzzy expert system and remote sensing," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 433-454, June.
    9. Danish Farooq & Sarbast Moslem & Rana Faisal Tufail & Omid Ghorbanzadeh & Szabolcs Duleba & Ahsen Maqsoom & Thomas Blaschke, 2020. "Analyzing the Importance of Driver Behavior Criteria Related to Road Safety for Different Driving Cultures," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    10. Ali Aldrees, 2021. "Water management in Saudi Arabia: a case study of Makkah Al Mukarramah region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13650-13666, September.
    11. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    12. Wen Zhang & Jian-ping Chen & Qing Wang & Yuke An & Xin Qian & Liangjun Xiang & Longxiang He, 2013. "Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1073-1100, March.
    13. Elissavet Feloni & Andreas Anayiotos & Evangelos Baltas, 2022. "A Spatial Analysis Approach for Urban Flood Occurrence and Flood Impact Based on Geomorphological, Meteorological, and Hydrological Factors," Geographies, MDPI, vol. 2(3), pages 1-12, August.
    14. Chengwei Lu & Jianzhong Zhou & Zhongzheng He & Shuai Yuan, 2018. "Evaluating typical flood risks in Yangtze River Economic Belt: application of a flood risk mapping framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1187-1210, December.
    15. Sabina Kordana-Obuch & Mariusz Starzec, 2020. "Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates," Resources, MDPI, vol. 9(9), pages 1-20, September.
    16. Ahmad Rajabi & Saeid Shabanlou & Fariborz Yosefvand & Afshin Kiani, 2021. "Exploring the sample size and replications scenarios effect on spatial prediction of flood, using MARS and MaxEnt methods case study: saliantape catchment, Golestan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 871-901, October.
    17. Fawz Manyaga & Nilufer Nilufer & Zineb Hajaoui, 2020. "A systematic literature review on multi-criteria decision making in disaster management," International Journal of Business Ecosystem & Strategy (2687-2293), Bussecon International Academy, vol. 2(2), pages 1-7, April.
    18. Rodeano Roslee & Felix Tongkul & Norbert Simon & Mohd. Norazman Norhisham, 2017. "Flood Potential Analysis (FPAn) using Geo-Spatial Data in Penampang area, Sabah," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 1(1), pages 1-6, February.
    19. Hang Ha & Quynh Duy Bui & Huy Dinh Nguyen & Binh Thai Pham & Trinh Dinh Lai & Chinh Luu, 2023. "A practical approach to flood hazard, vulnerability, and risk assessing and mapping for Quang Binh province, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1101-1130, February.
    20. G. Papaioannou & L. Vasiliades & A. Loukas, 2015. "Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 399-418, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04871-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.