IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i1d10.1007_s11069-023-05890-6.html
   My bibliography  Save this article

Storm surges and coastal inundation during extreme events in the Mediterranean Sea: the IANOS Medicane

Author

Listed:
  • Y. Androulidakis

    (Aristotle University of Thessaloniki
    University of the Aegean)

  • C. Makris

    (Aristotle University of Thessaloniki)

  • Z. Mallios

    (Aristotle University of Thessaloniki)

  • I. Pytharoulis

    (Aristotle University of Thessaloniki)

  • V. Baltikas

    (Aristotle University of Thessaloniki)

  • Y. Krestenitis

    (Aristotle University of Thessaloniki)

Abstract

The IANOS Medicane was one of the most severe storms that have formed in the Mediterranean Sea with Category 2 Hurricane characteristics. The storm induced a significant increase in sea-level elevation along its pathway and caused storm surges at the central Ionian Sea with consequent impacts on coastal regions of the Ionian Islands and western Greece. An integrated approach, based on hydrodynamic ocean simulations, coupled to meteorological and coastal flooding simulations, is used in combination with field and satellite observations to analyze the marine weather conditions, the storm surge characteristics, and the coastal inundation characteristics due to the impact of IANOS Medicane in September 2020. The evolution of the Medicane and the respective storm surge in the ocean have been successfully recorded by the met-ocean simulations, part of an active public-access operational forecast system. Both wind and atmospheric pressure patterns affected the storm surge variability over the Ionian Sea. The direct intrusion of the Medicane from the central Mediterranean Sea toward the Ionian Sea formed storm surges over several coastal areas, even before the storm’s landfall, due to the accompanying onshore currents. Storm surges in the order of 30 cm generated extensive flooding over lowland coastal areas, as confirmed by both satellite (Normalized Difference Water Index, NDWI) and numerical (coastal inundation modeling) data. Satellite-derived and simulated estimations showed that, in specific coastal regions, the run-up of seawater extended up to 200 m inland, depending on the hydraulic connectivity between the lowland areas, which determined the inundation extents during the storm surge.

Suggested Citation

  • Y. Androulidakis & C. Makris & Z. Mallios & I. Pytharoulis & V. Baltikas & Y. Krestenitis, 2023. "Storm surges and coastal inundation during extreme events in the Mediterranean Sea: the IANOS Medicane," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 939-978, May.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05890-6
    DOI: 10.1007/s11069-023-05890-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05890-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05890-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Jorge A. Ramirez & Michal Lichter & Tom J. Coulthard & Chris Skinner, 2016. "Hyper-resolution mapping of regional storm surge and tide flooding: comparison of static and dynamic models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 571-590, May.
    3. Caridad Ballesteros & José A. Jiménez & Christophe Viavattene, 2018. "A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 265-292, January.
    4. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sooncheol Hwang & Sangyoung Son & Chilwoo Lee & Hyun-Doug Yoon, 2020. "Quantitative assessment of inundation risks from physical contributors associated with future storm surges: a case study of Typhoon Maemi (2003)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1389-1411, November.
    2. Inga J. Sauer & Elisabet Roca & Míriam Villares, 2021. "Integrating climate change adaptation in coastal governance of the Barcelona metropolitan area," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(4), pages 1-27, May.
    3. Stanley Changnon, 2009. "Characteristics of severe Atlantic hurricanes in the United States: 1949–2006," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 329-337, March.
    4. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    5. Yanos Zylberberg, 2010. "Natural natural disasters and economic disruption," PSE Working Papers halshs-00564946, HAL.
    6. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    7. Nicola Ranger & Falk Nieh�rster, 2011. "Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments," GRI Working Papers 51, Grantham Research Institute on Climate Change and the Environment.
    8. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.
    9. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    10. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    11. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    12. Geoffrey Heal & Howard Kunreuther, 2010. "Environment and Energy: Catastrophic Liabilities from Nuclear Power Plants," NBER Chapters, in: Measuring and Managing Federal Financial Risk, pages 235-257, National Bureau of Economic Research, Inc.
    13. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    14. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.
    15. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    16. Camila I. Donatti & Celia A. Harvey & David Hole & Steven N. Panfil & Hanna Schurman, 2020. "Indicators to measure the climate change adaptation outcomes of ecosystem-based adaptation," Climatic Change, Springer, vol. 158(3), pages 413-433, February.
    17. Don Driscoll & Adam Felton & Philip Gibbons & Annika Felton & Nicola Munro & David Lindenmayer, 2012. "Priorities in policy and management when existing biodiversity stressors interact with climate-change," Climatic Change, Springer, vol. 111(3), pages 533-557, April.
    18. Dasgupta, Susmita & Laplante, Benoit & Murray, Siobhan & Wheeler, David, 2009. "Sea-level rise and storm surges : a comparative analysis of impacts in developing countries," Policy Research Working Paper Series 4901, The World Bank.
    19. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    20. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05890-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.