IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i1d10.1007_s11069-023-05878-2.html
   My bibliography  Save this article

Badland erosion susceptibility mapping using machine learning data mining techniques, Firozkuh watershed, Iran

Author

Listed:
  • Majid Mohammady

    (Semnan University)

Abstract

Badlands are landforms related to runoff, with dissected V-shaped valleys, short steep slopes, and high drainage density, and results from a very important type of erosion that develops due to a complex interaction of conditioning factors, including climatic, hydrologic, geologic and soil properties, topographic characteristics, and land use. The main goals of this study were (1) create badland susceptibility maps of the Firozkuh watershed and five machine learning algorithms (models)—functional discriminant analysis (FDA), generalized linear model (GLM), mixture discriminant analysis (MDA), multivariate adaptive regression spline (MARS), and support vector machine (SVM); and (2) compare the accuracy of these models. Sixteen conditioning factors were chosen to model and classify badland susceptibility based on a literature review, data availability, and field surveys. Model accuracy was assessed using ROC curve and AUC analyses. The analyses showed that SVM was “excellent,” MARS was “very good,” MDA was “good,” and GLM and FDA were “moderate” in classification accuracy. The land area of the very high and high classes ranged from 31 to 51% of the Firozkuh watershed for the GLM and SVM models, respectively. This indicates that badland erosion is a very important problem in the study area. Climatic, hydrologic, geologic, topographic, and soil conditions as well as land use changes render the Firozkuh watershed prone to badland formation and soil erosion which results in substantial socioeconomic losses. Badland susceptibility mapping is an important tool that can be used to improve managing future badland erosion in the Firozkuh watershed and other areas affected by badland erosion.

Suggested Citation

  • Majid Mohammady, 2023. "Badland erosion susceptibility mapping using machine learning data mining techniques, Firozkuh watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 703-721, May.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05878-2
    DOI: 10.1007/s11069-023-05878-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05878-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05878-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Danny H.W. & Chen, Wenqiang & Li, Shuyang & Lou, Siwei, 2019. "Estimation of hourly global solar radiation using Multivariate Adaptive Regression Spline (MARS) – A case study of Hong Kong," Energy, Elsevier, vol. 186(C).
    2. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    3. Saro Lee & Soo-Min Hong & Hyung-Sup Jung, 2017. "A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    4. Francesca Vergari, 2015. "Assessing soil erosion hazard in a key badland area of Central Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 71-95, November.
    5. Gareth M. James & Trevor J. Hastie, 2001. "Functional linear discriminant analysis for irregularly sampled curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 533-550.
    6. Krzemień, Alicja, 2019. "Fire risk prevention in underground coal gasification (UCG) within active mines: Temperature forecast by means of MARS models," Energy, Elsevier, vol. 170(C), pages 777-790.
    7. Epifanio, Irene & Ventura-Campos, Noelia, 2011. "Functional data analysis in shape analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2758-2773, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    2. Hongxiao Zhu & Philip J. Brown & Jeffrey S. Morris, 2012. "Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models," Biometrics, The International Biometric Society, vol. 68(4), pages 1260-1268, December.
    3. Jiménez Recaredo, Raúl José & Elías Fernández, Antonio, 2017. "Prediction Bands for Functional Data Based on Depth Measures," DES - Working Papers. Statistics and Econometrics. WS 24606, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Li, Pai-Ling & Chiou, Jeng-Min & Shyr, Yu, 2017. "Functional data classification using covariate-adjusted subspace projection," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 21-34.
    5. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    6. Yuhan Zhang & Youqi Wang & Yiru Bai & Ruiyuan Zhang & Xu Liu & Xian Ma, 2023. "Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models," Land, MDPI, vol. 12(11), pages 1-15, October.
    7. Zhang, Xin & Jeske, Daniel R. & Li, Jun & Wong, Vance, 2016. "A sequential logistic regression classifier based on mixed effects with applications to longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 238-249.
    8. Bharat Prasad Bhandari & Subodh Dhakal & Ching-Ying Tsou, 2024. "Assessing the Prediction Accuracy of Frequency Ratio, Weight of Evidence, Shannon Entropy, and Information Value Methods for Landslide Susceptibility in the Siwalik Hills of Nepal," Sustainability, MDPI, vol. 16(5), pages 1-25, March.
    9. Rachdi, Mustapha & Laksaci, Ali & Demongeot, Jacques & Abdali, Abdel & Madani, Fethi, 2014. "Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 53-68.
    10. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    11. Llop, P. & Forzani, L. & Fraiman, R., 2011. "On local times, density estimation and supervised classification from functional data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 73-86, January.
    12. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    13. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    14. Jihye Han & Soyoung Park & Seongheon Kim & Sanghun Son & Seonghyeok Lee & Jinsoo Kim, 2019. "Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    15. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    16. Lu Gan & Yuanyuan Wang & Yusheng Wang & Benjamin Lev & Wenjing Shen & Wen Jiang, 2021. "Coupling coordination analysis with data-driven technology for disaster–economy–ecology system: an empirical study in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2123-2153, July.
    17. Sholeh Hadi Pramono & Mahdin Rohmatillah & Eka Maulana & Rini Nur Hasanah & Fakhriy Hario, 2019. "Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System," Energies, MDPI, vol. 12(17), pages 1-16, August.
    18. Wei-Chiang Hong & Guo-Feng Fan, 2019. "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting," Energies, MDPI, vol. 12(6), pages 1-16, March.
    19. Hidetoshi Matsui & Takamitsu Araki & Sadanori Konishi, 2011. "Multiclass Functional Discriminant Analysis and Its Application to Gesture Recognition," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 227-243, July.
    20. Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05878-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.