IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i1d10.1007_s11069-023-05852-y.html
   My bibliography  Save this article

DRAI: a risk-based drought monitoring and alerting system in Brazil

Author

Listed:
  • Raissa Zurli Bittencourt Bravo

    (Pontifical Catholic University of Rio de Janeiro)

  • Adriana Leiras

    (Pontifical Catholic University of Rio de Janeiro)

  • Fernando Luiz Cyrino Oliveira

    (Pontifical Catholic University of Rio de Janeiro)

  • Ana Paula Martins do Amaral Cunha

    (National Centre for Monitoring and Early Warnings of Natural Disasters – CEMADEN)

Abstract

Drought is recognized as a devastating natural hazard, affecting human livelihood and causing a substantial economic impact. Consequently, experts and decision-makers concentrate on new approaches to reducing droughts’ economic and social effects through studies that focus on the monitoring, prediction, and risk analysis of drought to inform drought preparedness strategies and mitigation measures. This study presents the Drought Risk Assessment Interface (DRAI), a drought early warning system applied to the Brazilian semiarid region based on a composite index of meteorological drought risk. The risk index has two components: hazard and vulnerability. The hazard component considers meteorological indicators, while the vulnerability component encompasses social variables. Based on the opinion of experts from several countries, we define the weight of each of these indicators in the risk index using the analytical hierarchy process. Then, we propose a standard for generating warnings in the DRAI. The warnings are associated with seven drought risk mitigation measures validated by local technicians. We conclude that DRAI is a valuable tool to academics and practitioners, such as Civil Defences that can act directly in risk mitigation actions.

Suggested Citation

  • Raissa Zurli Bittencourt Bravo & Adriana Leiras & Fernando Luiz Cyrino Oliveira & Ana Paula Martins do Amaral Cunha, 2023. "DRAI: a risk-based drought monitoring and alerting system in Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 113-142, May.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05852-y
    DOI: 10.1007/s11069-023-05852-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05852-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05852-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raissa Zurli Bittencourt Bravo & Ana Paula Martins do Amaral Cunha & Adriana Leiras & Fernando Luiz Cyrino Oliveira, 2021. "A new approach for a drought composite index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 755-773, August.
    2. Jiajin Wang & Yaobin Meng, 2013. "An analysis of the drought in Yunnan, China, from a perspective of society drought severity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 431-458, June.
    3. Jiansheng Wu & Xin Lin & Meijuan Wang & Jian Peng & Yuanjie Tu, 2017. "Assessing Agricultural Drought Vulnerability by a VSD Model: A Case Study in Yunnan Province, China," Sustainability, MDPI, vol. 9(6), pages 1-16, May.
    4. Jieming Chou & Tian Xian & Runze Zhao & Yuan Xu & Fan Yang & Mingyang Sun, 2019. "Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    5. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    6. Wei Pei & Qiang Fu & Dong Liu & Tianxiao Li & Kun Cheng & Song Cui, 2019. "A Novel Method for Agricultural Drought Risk Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2033-2047, April.
    7. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    8. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    9. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raissa Zurli Bittencourt Bravo & Ana Paula Martins do Amaral Cunha & Adriana Leiras & Fernando Luiz Cyrino Oliveira, 2021. "A new approach for a drought composite index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 755-773, August.
    2. Dayanna Rodrigues da Cunha Nunes & Orivalde Soares da Silva Júnior & Renata Albergaria de Mello Bandeira & Yesus Emmanuel Medeiros Vieira, 2023. "A Robust Stochastic Programming Model for the Well Location Problem: The Case of The Brazilian Northeast Region," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    3. Janna Frischen & Isabel Meza & Daniel Rupp & Katharina Wietler & Michael Hagenlocher, 2020. "Drought Risk to Agricultural Systems in Zimbabwe: A Spatial Analysis of Hazard, Exposure, and Vulnerability," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    4. Divya Saini & Omvir Singh & Tejpal Sharma & Pankaj Bhardwaj, 2022. "Geoinformatics and analytic hierarchy process based drought vulnerability assessment over a dryland ecosystem of north-western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1427-1454, November.
    5. Soyeon Lim & Seungyub Lee & Donghwi Jung, 2021. "Identifying the Drought Impact Factors and Developing Drought Scenarios Using the DSD Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4809-4823, November.
    6. Li Fawen & Zhang Manjing & Liu Yaoze, 2022. "Quantitative research on drought loss sensitivity of summer maize based on AquaCrop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1065-1084, June.
    7. Araceli Martin-Candilejo & Francisco J. Martin-Carrasco & Ana Iglesias & Luis Garrote, 2023. "Heading into the Unknown? Exploring Sustainable Drought Management in the Mediterranean Region," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    8. Wei Pei & Cuizhu Tian & Qiang Fu & Yongtai Ren & Tianxiao Li, 2022. "Risk analysis and influencing factors of drought and flood disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1599-1620, February.
    9. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    10. Fengjie Gao & Si Zhang & Rui Yu & Yafang Zhao & Yuxin Chen & Ying Zhang, 2023. "Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China," Land, MDPI, vol. 12(6), pages 1-19, June.
    11. Kavina S. Dayal & Ravinesh C. Deo & Armando A. Apan, 2018. "Spatio-temporal drought risk mapping approach and its application in the drought-prone region of south-east Queensland, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 823-847, September.
    12. Jesús Vargas & Pilar Paneque, 2017. "Methodology for the analysis of causes of drought vulnerability on the River Basin scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 609-621, November.
    13. Moonju Kim & Befekadu Chemere & Kyungil Sung, 2019. "Effect of Heavy Rainfall Events on the Dry Matter Yield Trend of Whole Crop Maize ( Zea mays L.)," Agriculture, MDPI, vol. 9(4), pages 1-11, April.
    14. Kaiwen Li & Ming Wang & Kai Liu, 2021. "The Study on Compound Drought and Heatwave Events in China Using Complex Networks," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    15. Omolola M. Adisa & Muthoni Masinde & Joel O. Botai & Christina M. Botai, 2020. "Bibliometric Analysis of Methods and Tools for Drought Monitoring and Prediction in Africa," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    16. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    17. Biyun Guo & Taiping Xie & M.V. Subrahmanyam, 2019. "The Impact of China’s Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    18. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2022. "Assessing and Predicting the Vulnerability to Agrometeorological Drought Using the Fuzzy-AHP and Second-order Markov Chain techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4403-4424, September.
    19. Yuanhe Yu & Jinliang Wang & Feng Cheng & Huan Deng & Sheng Chen, 2020. "Drought monitoring in Yunnan Province based on a TRMM precipitation product," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2369-2387, December.
    20. Varsha Pandey & Prashant K Srivastava & Sudhir K Singh & George P. Petropoulos & Rajesh Kumar Mall, 2021. "Drought Identification and Trend Analysis Using Long-Term CHIRPS Satellite Precipitation Product in Bundelkhand, India," Sustainability, MDPI, vol. 13(3), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05852-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.