IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i1d10.1007_s11069-022-05413-9.html
   My bibliography  Save this article

Multivariate return period for different types of flooding in city of Monza, Italy

Author

Listed:
  • M. Mehdi Bateni

    (Scuola Universitaria Superiore IUSS Pavia)

  • Mario L. V. Martina

    (Scuola Universitaria Superiore IUSS Pavia)

  • ·Marcello Arosio

    (Scuola Universitaria Superiore IUSS Pavia)

Abstract

The return period is a probabilistic criterion used to measure and communicate the random occurrence of geophysical events such as floods in risk assessment studies. Since an individual risk may be strongly affected by the degree of dependence amongst all risks, the need for the provision of multivariate design quantiles has gained ground. Consequently, several recent studies have focused on estimation of multi-hazard risk resulted from different hazard types. In this study, multi-hazard return periods are derived for riverine and pluvial floods in city of Monza, Italy, based on different copula dependence structures. It is shown that ignoring statistical dependence among different inter-correlated hazards may cause significant misestimation of risks.

Suggested Citation

  • M. Mehdi Bateni & Mario L. V. Martina & ·Marcello Arosio, 2022. "Multivariate return period for different types of flooding in city of Monza, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 811-823, October.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05413-9
    DOI: 10.1007/s11069-022-05413-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05413-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05413-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genest C. & Boies J-C., 2003. "Detecting Dependence With Kendall Plots," The American Statistician, American Statistical Association, vol. 57, pages 275-284, November.
    2. A. Carpignano & E. Golia & C. Di Mauro & S. Bouchon & J-P. Nordvik, 2009. "A methodological approach for the definition of multi-risk maps at regional level: first application," Journal of Risk Research, Taylor & Francis Journals, vol. 12(3-4), pages 513-534, June.
    3. Carsten Bormann & Melanie Schienle, 2020. "Detecting Structural Differences in Tail Dependence of Financial Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 380-392, April.
    4. Frahm, Gabriel & Junker, Markus & Schmidt, Rafael, 2005. "Estimating the tail-dependence coefficient: Properties and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 80-100, August.
    5. Heidi Kreibich & Philip Bubeck & Michael Kunz & Holger Mahlke & Stefano Parolai & Bijan Khazai & James Daniell & Tobia Lakes & Kai Schröter, 2014. "A review of multiple natural hazards and risks in Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2279-2304, December.
    6. Melanie Kappes & Margreth Keiler & Kirsten Elverfeldt & Thomas Glade, 2012. "Challenges of analyzing multi-hazard risk: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1925-1958, November.
    7. Abberger, Klaus, 2004. "A simple graphical method to explore tail-dependence in stock-return pairs," CoFE Discussion Papers 04/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
    8. Christian Genest & Bruno Rémillard, 2004. "Test of independence and randomness based on the empirical copula process," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 335-369, December.
    9. Peng, L., 1999. "Estimation of the coefficient of tail dependence in bivariate extremes," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 399-409, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    2. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    3. Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
    4. Mieko Kumasaki & Malcolm King & Mitsuru Arai & Lili Yang, 2016. "Anatomy of cascading natural disasters in Japan: main modes and linkages," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1425-1441, February.
    5. Adriana Galderisi & Giada Limongi, 2021. "A Comprehensive Assessment of Exposure and Vulnerabilities in Multi-Hazard Urban Environments: A Key Tool for Risk-Informed Planning Strategies," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    6. Lehtomaa, Jaakko & Resnick, Sidney I., 2020. "Asymptotic independence and support detection techniques for heavy-tailed multivariate data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 262-277.
    7. Marta Ferreira & Helena Ferreira, 2012. "On extremal dependence: some contributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 566-583, September.
    8. M. Budimir & P. Atkinson & H. Lewis, 2014. "Earthquake-and-landslide events are associated with more fatalities than earthquakes alone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 895-914, June.
    9. Y Hoga, 2018. "A structural break test for extremal dependence in β-mixing random vectors," Biometrika, Biometrika Trust, vol. 105(3), pages 627-643.
    10. Arnaud Mignan & Stefan Wiemer & Domenico Giardini, 2014. "The quantification of low-probability–high-consequences events: part I. A generic multi-risk approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1999-2022, September.
    11. Gabriella Tocchi & Daria Ottonelli & Nicola Rebora & Maria Polese, 2023. "Multi-Risk Assessment in the Veneto Region: An Approach to Rank Seismic and Flood Risk," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    12. Tim Bedford & Alireza Daneshkhah & Kevin J. Wilson, 2016. "Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 792-815, April.
    13. Mieko Kumasaki & Malcolm King & Mitsuru Arai & Lili Yang, 2016. "Anatomy of cascading natural disasters in Japan: main modes and linkages," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1425-1441, February.
    14. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    15. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    16. Luo, Weiwei & Brooks, Robert D. & Silvapulle, Param, 2011. "Effects of the open policy on the dependence between the Chinese 'A' stock market and other equity markets: An industry sector perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(1), pages 49-74, February.
    17. Chaofeng Shao & Juan Yang & Xiaogang Tian & Meiting Ju & Lei Huang, 2013. "Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks," IJERPH, MDPI, vol. 10(4), pages 1-22, April.
    18. Cumperayot, Phornchanok & Kouwenberg, Roy, 2013. "Early warning systems for currency crises: A multivariate extreme value approach," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 151-171.
    19. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    20. Mohamad Haytham Klaho & Hamid R. Safavi & Mohammad H. Golmohammadi & Maamoun Alkntar, 2022. "Comparison between bivariate and trivariate flood frequency analysis using the Archimedean copula functions, a case study of the Karun River in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1589-1610, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05413-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.