IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i1d10.1007_s11069-022-05380-1.html
   My bibliography  Save this article

Monitoring and projection of climate change impact on 24-h probable maximum precipitation in the Southeast of Caspian Sea

Author

Listed:
  • Zahra Afzali-Gorouh

    (Ferdowsi University of Mashhad)

  • Alireza Faridhosseini

    (Ferdowsi University of Mashhad)

  • Bahram Bakhtiari

    (Shahid Bahonar University of Kerman)

  • Abolfazl Mosaedi

    (Ferdowsi University of Mashhad)

  • Nasrin Salehnia

    (Seoul National University
    Seoul National University)

Abstract

Due to the impacts of climate change on probable maximum precipitation (PMP) and its importance in designing hydraulic structures, PMP estimation is crucial. In this study, the effect of climate change on 24-h probable maximum precipitation (PMP24) was investigated in a part of the Qareh-Su basin located in the Southeast of Caspian Sea. So far, there have been no estimates of the hydrometeorological PMP values under climate change conditions in the study area. For this purpose, the climatic data were applied during the years 1988–2017. To generate future data, the outputs of the CanESM2 (Second Generation Canadian Earth System Model) model as a general circulation model (GCM) under optimistic (RCP2.6), middle (RCP4.5), and pessimistic (RCP8.5) emission scenarios, and statistical downscaling model (SDSM) were used in the near (2019–2048) and the far (2049–2078) future periods. The PMP24 values were estimated using a physical method in the baseline and future periods under the three scenarios. The PMP24 value was estimated about 143 mm for the baseline period, using a physical approach. These values were 98, 105, and 109 for the near-future and 129, 122, and 126 mm for the far-future period. The results showed that the physical approach's PMP24 values tend to fall at 14–38%. Overall, the PMP24 values decrease in the future, and the rate of PMP decrease in the near-future was more than the rate of the far-future. The spatial distribution maps of PMP24 in the baseline and future periods showed that the PMP24 values decreased from west to east.

Suggested Citation

  • Zahra Afzali-Gorouh & Alireza Faridhosseini & Bahram Bakhtiari & Abolfazl Mosaedi & Nasrin Salehnia, 2022. "Monitoring and projection of climate change impact on 24-h probable maximum precipitation in the Southeast of Caspian Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 77-99, October.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05380-1
    DOI: 10.1007/s11069-022-05380-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05380-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05380-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    2. Forood Sharifi & S. Samadi & Catherine Wilson, 2012. "Causes and consequences of recent floods in the Golestan catchments and Caspian Sea regions of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 533-550, March.
    3. Shahab Shaffie & GholamAli Mozaffari & Younes Khosravi, 2019. "Determination of extreme precipitation threshold and analysis of its effective patterns (case study: west of Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 857-878, November.
    4. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    2. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    3. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    4. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    5. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    6. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    7. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    8. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    9. Pedro Pérez-Cutillas & Pedro Baños Páez & Isabel Banos-González, 2020. "Variability of Water Balance under Climate Change Scenarios. Implications for Sustainability in the Rhône River Basin," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    10. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    11. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    12. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    13. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Working Papers 2019-2, Brown University, Department of Economics.
    14. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    15. Carina Almeida & Tiago B. Ramos & João Sobrinho & Ramiro Neves & Rodrigo Proença de Oliveira, 2019. "An Integrated Modelling Approach to Study Future Water Demand Vulnerability in the Montargil Reservoir Basin, Portugal," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
    16. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    17. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    18. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    19. Vassiliki Varela & Diamando Vlachogiannis & Athanasios Sfetsos & Stelios Karozis & Nadia Politi & Frédérique Giroud, 2019. "Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    20. Yu-Fu Chen & Michael Funke & Nicole Glanemann, 2011. "Time is Running Out: The 2°C Target and Optimal Climate Policies," CESifo Working Paper Series 3664, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05380-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.