IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i3d10.1007_s11069-021-05017-9.html
   My bibliography  Save this article

Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model

Author

Listed:
  • K. K. Shukla

    (Indian Institute of Science Education and Research Mohali)

  • Raju Attada

    (Indian Institute of Science Education and Research Mohali)

  • Aman W. Khan

    (EPSA, ISRO)

  • Prashant Kumar

    (EPSA, ISRO)

Abstract

This study uses a high-resolution Weather Research and Forecasting model coupled with the chemistry module (WRF-Chem) to analyze the dust storm that occurred during 12‒17 June 2018 over the northwest Indo-Gangetic Plain (NW-IGP). The performance of WRF-Chem is validated against the ground- and space-based datasets before being used to investigate the impact of the dust storm on the air quality and radiative changes. The aerosols and meteorological parameters from in situ, satellite and reanalysis were used to evaluate the WRF-Chem model. The horizontal and vertical distributions of dust aerosols reproduced by the WRF-Chem agree with the observations. However, the WRF-Chem-simulated mean aerosol optical depth (AOD ~ 1.21 ± 0.17) is slightly underestimated compared to MODIS AOD (1.60 ± 0.32). Furthermore, the evolution of dust storm and associated changes in atmospheric and air quality conditions are well simulated by the WRF-Chem. The ERA5 and WRF-Chem suggest that the dust storm is triggered by the low-pressure system over the NW-IGP, which helps in bringing the dust-laden air masses from the west and southwest of the study region with the strong southwesterly winds. Our results reveal that the dust storm has a significant impact on air quality and horizontal visibility. During the peak time of the dust storm, the horizontal visibility dropped drastically from 4 to 0.48 km. In addition, the daily averaged in situ and model-simulated PM10 and PM2.5 concentration abruptly increased by a factor of two on peak time of the storm that deteriorated the air quality. The WRF-Chem-simulated dust-induced net radiative forcing shows the surface cooling (− 16.18 ± 3.88 Wm−2), atmospheric warming (+ 11.62 ± 4.96 Wm−2) and top of the atmospheric cooling (− 4.57 ± 0.92 Wm−2) due to the presence of elevated dust aerosols.

Suggested Citation

  • K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05017-9
    DOI: 10.1007/s11069-021-05017-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05017-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05017-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    2. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    3. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    4. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    5. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    6. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    7. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    8. Ling-Yun He & Xiao-Feng Qi, 2021. "Environmental Courts, Environment and Employment: Evidence from China," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    9. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    10. Weicong Fu & Qunyue Liu & Cecil Konijnendijk van den Bosch & Ziru Chen & Zhipeng Zhu & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Long-Term Atmospheric Visibility Trends and Their Relations to Socioeconomic Factors in Xiamen City, China," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    11. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    12. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    13. Wei Xue & Qingming Zhan & Qi Zhang & Zhonghua Wu, 2019. "Spatiotemporal Variations of Particulate and Gaseous Pollutants and Their Relations to Meteorological Parameters: The Case of Xiangyang, China," IJERPH, MDPI, vol. 17(1), pages 1-23, December.
    14. Ying Su & Chunyan Lu & Xiaoqing Lin & Lianxiu Zhong & Yibin Gao & Yifan Lei, 2020. "Analysis of Spatio-temporal Characteristics and Driving Forces of Air Quality in the Northern Coastal Comprehensive Economic Zone, China," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    15. Yang, Aoxi & Wang, Yahui, 2023. "Transition of household cooking energy in China since the 1980s," Energy, Elsevier, vol. 270(C).
    16. Damm, Yannic Rudá & Börner, Jan & Gerber, Nicolas, 2021. "Health Effects of the Amazon Soy Moratorium," 2021 Conference, August 17-31, 2021, Virtual 315401, International Association of Agricultural Economists.
    17. Shih Ying Chang & William Vizuete & Marc Serre & Lakshmi Pradeepa Vennam & Mohammad Omary & Vlad Isakov & Michael Breen & Saravanan Arunachalam, 2017. "Finely Resolved On‐Road PM2.5 and Estimated Premature Mortality in Central North Carolina," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2420-2434, December.
    18. James K. Hammitt & Peter Morfeld & Jouni T. Tuomisto & Thomas C. Erren, 2020. "Premature Deaths, Statistical Lives, and Years of Life Lost: Identification, Quantification, and Valuation of Mortality Risks," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 674-695, April.
    19. Rong Ma & Ke Li & Yixin Guo & Bo Zhang & Xueli Zhao & Soeren Linder & ChengHe Guan & Guoqian Chen & Yujie Gan & Jing Meng, 2021. "Mitigation potential of global ammonia emissions and related health impacts in the trade network," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    20. Paula Quentin & Jost Buscher & Thomas Eltner, 2023. "Transport Planning beyond Infrastructural Change: An Empirical Analysis of Transport Planning Practices in the Rhine-Main Region in Germany," Sustainability, MDPI, vol. 15(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05017-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.