IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v108y2021i3d10.1007_s11069-021-04799-2.html
   My bibliography  Save this article

Development of a GIS-based alert system to mitigate flash flood impacts in Asyut governorate, Egypt

Author

Listed:
  • Soha A. Mohamed

    (The Higher Institute of Tourism, Hotels and Computer (H.I.T.H.C.), The Ministry of Higher, Education and Scientific Research (MHESR))

Abstract

Egypt is one Arab country that is vulnerable to flash floods caused by heavy and intensive rainfall. Different locations in Egypt are vulnerable to the hazards of flash floods, especially in Upper Egypt. Throughout history, Egypt witnessed a series of events of flash floods that lead to mortality, damages, and economic losses. The intensity and frequency of flash floods in Egypt vary from year to year according to a number of hydrological and climatological variables. Although several previous flash floods studies have been conducted in Egypt, studies on the governorate of Asyut are still limited. This study integrates the physical and social parameters in order to assess the vulnerability to flash floods. The objectives of this study are to shed light on flash floods in the study area, develop a vulnerability model to determine the regions vulnerable to the impacts of flash floods, and propose a flash flood alert system in the governorate of Asyut in Egypt to mitigate the impacts of flash floods and to avoid the loss of life and property. The AHP (analytical hierarchy process) is used for assigning the optimal criterion weight of the considered vulnerability parameters based on the responses of eight expert respondents to an online Google forms questionnaire. The highest weighted flash floods causative parameters are population density (27.4%), precipitation (22.1%), total population (16.4%), and elevation (10.2%), respectively. The results reveal that Asyut is one of the Egyptian governorates prone to flash floods’ impacts, especially in Dayrut, Al-Qusiyah, and Abnub, urban districts. The findings of this study are expected to be useful to policymakers and responsible authorities for better disaster risk management and for dealing with the flash floods events in the future.

Suggested Citation

  • Soha A. Mohamed, 2021. "Development of a GIS-based alert system to mitigate flash flood impacts in Asyut governorate, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2739-2763, September.
  • Handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04799-2
    DOI: 10.1007/s11069-021-04799-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04799-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04799-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    2. Konstantinos Karagiorgos & Micha Heiser & Thomas Thaler & Johannes Hübl & Sven Fuchs, 2016. "Micro-sized enterprises: vulnerability to flash floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1091-1107, November.
    3. Hamid Pourghasemi & Biswajeet Pradhan & Candan Gokceoglu, 2012. "Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 965-996, September.
    4. Pauline Bremond & Frédéric Grelot & Anne-Laurence Agenais, 2013. "Review Article: "Flood damage assessment on agricultural areas: review and analysis of existing methods"," Working Papers hal-00783552, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    2. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    3. Txomin Bornaetxea & Juan Remondo & Jaime Bonachea & Pablo Valenzuela, 2023. "Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2513-2542, September.
    4. Gökhan Demir & Mustafa Aytekin & Aykut Akgün & Sabriye İkizler & Orhan Tatar, 2013. "A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1481-1506, February.
    5. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    6. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    7. Brennan, Timothy J., 2011. "Energy Efficiency Policy: Surveying the Puzzles," RFF Working Paper Series dp-11-27, Resources for the Future.
    8. Sadhan Malik & Subodh Chandra Pal & Biswajit Das & Rabin Chakrabortty, 2020. "Assessment of vegetation status of Sali River basin, a tributary of Damodar River in Bankura District, West Bengal, using satellite data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5651-5685, August.
    9. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    10. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    11. Qiang Zhang & Jianfeng Li & Vijay Singh & Yungang Bai, 2012. "SPI-based evaluation of drought events in Xinjiang, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 481-492, October.
    12. Kibeom Kwon & Minkyu Kang & Dongku Kim & Hangseok Choi, 2023. "Prioritization of Hazardous Zones Using an Advanced Risk Management Model Combining the Analytic Hierarchy Process and Fuzzy Set Theory," Sustainability, MDPI, vol. 15(15), pages 1-15, August.
    13. Wenqun Xiu & Shuying Wang & Wenguang Qi & Xue Li & Chisheng Wang, 2021. "Disaster Chain Analysis of Landfill Landslide: Scenario Simulation and Chain-Cutting Modeling," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    14. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    15. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    16. Rajesh Khatakho & Dipendra Gautam & Komal Raj Aryal & Vishnu Prasad Pandey & Rajesh Rupakhety & Suraj Lamichhane & Yi-Chung Liu & Khameis Abdouli & Rocky Talchabhadel & Bhesh Raj Thapa & Rabindra Adhi, 2021. "Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    17. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    18. Aihua Wei & Duo Li & Yahong Zhou & Qinghai Deng & Liangdong Yan, 2021. "A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 405-430, January.
    19. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    20. Faisal AlShareef & Mohammed Aljoufie, 2020. "Identification of the Proper Criteria Set for Neighborhood Walkability Using the Fuzzy Analytic Hierarchy Process Model: A Case Study in Jeddah, Saudi Arabia," Sustainability, MDPI, vol. 12(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04799-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.