IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60385-1.html
   My bibliography  Save this article

Combined emergent constraints on future extreme precipitation changes

Author

Listed:
  • Hideo Shiogama

    (National Institute for Environmental Studies)

  • Michiya Hayashi

    (National Institute for Environmental Studies)

  • Nagio Hirota

    (National Institute for Environmental Studies)

  • Tomoo Ogura

    (National Institute for Environmental Studies)

  • Hyungjun Kim

    (Korea Advanced Institute of Science and Technology
    Korea Advanced Institute of Science and Technology
    Korea Advanced Institute of Science and Technology
    Korea Advanced Institute of Science and Technology)

  • Masahiro Watanabe

    (University of Tokyo)

Abstract

Recent studies have shown that the observed global warming trend over recent decades provides efficient constraints not only for future global mean temperature increases (ΔTgm) across Earth system models but also for changes in several climate variables that include significant ΔTgm–related uncertainty. However, ΔTgm–related emergent constraints (ECs) cannot reduce the uncertainty unrelated to ΔTgm. Here, to overcome this limitation, we develop an EC method and apply it to future changes in the annual maximum daily precipitation in order to reduce uncertainty therein. An EC for precipitation sensitivity based on historical extreme precipitation biases is combined with the constrained ΔTgm. This combined EC decreases the variance of the global mean precipitation by 42%, an improvement from only using temperature (resulting in 26% reduction), and the variance of regional precipitation by ≥ 30% in 24% of the globe (whereas ≥ 30% reduction is only seen in 2% of the globe with the temperature-related EC).

Suggested Citation

  • Hideo Shiogama & Michiya Hayashi & Nagio Hirota & Tomoo Ogura & Hyungjun Kim & Masahiro Watanabe, 2025. "Combined emergent constraints on future extreme precipitation changes," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60385-1
    DOI: 10.1038/s41467-025-60385-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60385-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60385-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    2. S. Pfahl & P. A. O’Gorman & E. M. Fischer, 2017. "Understanding the regional pattern of projected future changes in extreme precipitation," Nature Climate Change, Nature, vol. 7(6), pages 423-427, June.
    3. Alex Hall & Peter Cox & Chris Huntingford & Stephen Klein, 2019. "Progressing emergent constraints on future climate change," Nature Climate Change, Nature, vol. 9(4), pages 269-278, April.
    4. Masahiro Watanabe & Sarah M. Kang & Matthew Collins & Yen-Ting Hwang & Shayne McGregor & Malte F. Stuecker, 2024. "Possible shift in controls of the tropical Pacific surface warming pattern," Nature, Nature, vol. 630(8016), pages 315-324, June.
    5. Lester Kwiatkowski & Laurent Bopp & Olivier Aumont & Philippe Ciais & Peter M. Cox & Charlotte Laufkötter & Yue Li & Roland Séférian, 2017. "Emergent constraints on projections of declining primary production in the tropical oceans," Nature Climate Change, Nature, vol. 7(5), pages 355-358, May.
    6. Hideo Shiogama & Masahiro Watanabe & Hyungjun Kim & Nagio Hirota, 2022. "Emergent constraints on future precipitation changes," Nature, Nature, vol. 602(7898), pages 612-616, February.
    7. Masahiro Watanabe & Sarah M. Kang & Matthew Collins & Yen-Ting Hwang & Shayne McGregor & Malte F. Stuecker, 2024. "Author Correction: Possible shift in controls of the tropical Pacific surface warming pattern," Nature, Nature, vol. 634(8033), pages 3-3, October.
    8. Zeke Hausfather & Kate Marvel & Gavin A. Schmidt & John W. Nielsen-Gammon & Mark Zelinka, 2022. "Climate simulations: recognize the ‘hot model’ problem," Nature, Nature, vol. 605(7908), pages 26-29, May.
    9. Irina Melnikova & Tokuta Yokohata & Akihiko Ito & Kazuya Nishina & Kaoru Tachiiri & Hideo Shiogama, 2024. "Emergent constraints on future Amazon climate change-induced carbon loss using past global warming trends," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Hideo Shiogama & Seita Emori & Naota Hanasaki & Manabu Abe & Yuji Masutomi & Kiyoshi Takahashi & Toru Nozawa, 2011. "Observational constraints indicate risk of drying in the Amazon basin," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    11. Chad W. Thackeray & Alex Hall & Jesse Norris & Di Chen, 2022. "Constraining the increased frequency of global precipitation extremes under warming," Nature Climate Change, Nature, vol. 12(5), pages 441-448, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Li & Jieyu Liu & Fujun Du & Francis W. Zwiers & Guolin Feng, 2025. "Increasing certainty in projected local extreme precipitation change," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Irina Melnikova & Tokuta Yokohata & Akihiko Ito & Kazuya Nishina & Kaoru Tachiiri & Hideo Shiogama, 2024. "Emergent constraints on future Amazon climate change-induced carbon loss using past global warming trends," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jens Terhaar & Linus Vogt & Nicholas P. Foukal, 2025. "Atlantic overturning inferred from air-sea heat fluxes indicates no decline since the 1960s," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    5. Wenyu Zhou & L. Ruby Leung & Nicholas Siler & Jian Lu, 2023. "Future precipitation increase constrained by climatological pattern of cloud effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Kai Liu & Qianzhi Wang & Ming Wang & Elco E. Koks, 2023. "Global transportation infrastructure exposure to the change of precipitation in a warmer world," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Md Jamal Uddin Khan & Fabien Durand & M. Afroosa & Paul Coulet & Xavier Bertin & Valerie Mueller & Yann Krien & Caroline Wainwright, 2025. "Tropical cyclone induced compound flooding in Madagascar: a coupled modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(9), pages 11013-11050, May.
    9. Wenxia Zhang & Kalli Furtado & Tianjun Zhou & Peili Wu & Xiaolong Chen, 2022. "Constraining extreme precipitation projections using past precipitation variability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    12. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    13. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    14. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    15. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    16. Hemin Sun & Valentina Krysanova & Yu Gong & Miaoni Gao & Simon Treu & Ziyan Chen & Tong Jiang, 2024. "The recent trends of runoff in China attributable to climate change," Climatic Change, Springer, vol. 177(11), pages 1-19, November.
    17. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    18. Othman, Mohd Edzham Fareez & Sidek, Lariyah Mohd & Basri, Hidayah & El-Shafie, Ahmed & Ahmed, Ali Najah, 2025. "Climate challenges for sustainable hydropower development and operational resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    19. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    20. Emanuel Moench & Robin Schaal, 2025. "The impact of extreme weather events on the term structure of sovereign debt," Working Papers 11088, South African Reserve Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60385-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.