IDEAS home Printed from
   My bibliography  Save this article

The obstacles and challenges of transition towards a renewable and sustainable energy system in Azerbaijan and Poland


  • Marcin Cholewa

    (Mineral and Energy Economy Research Institute of the Polish Academy of Sciences)

  • Farid Mammadov

    (Universita Degli Studi Di Roma La Sapienza)

  • Agnieszka Nowaczek

    (Mineral and Energy Economy Research Institute of the Polish Academy of Sciences)


The aims of the paper are to identify and assess the determinants of transition to renewable and sustainable energy development in Azerbaijan and Poland. Both countries have a clear target to increase the share of renewable energy sources (RES) in the gross final energy consumption, i.e. Poland in the National Energy and Climate Plan for the years 2021–2030 declares that it wishes to achieve 21–23% by 2030 (total consumption in electricity, heating and cooling as well as for transport purposes). But there are currently significant producers and consumers of conventional energy carriers, respectively coal and oil, and these fuels ensure an appropriate level of energy security and production stability. Moreover, in Poland, the mining sector plays a very important social role, whereas the oil industry in Azerbaijan creates significant budget revenue. Therefore, even with stronger EU and worldwide climate policy and a decreasing cost of cleaner forms of energy, there are many challenges and obstacles for such countries in increasing energy from RES associated with energy security, efficiency, existing infrastructure, competitiveness and social aspects. In order to identify best practices for the transition to decarbonisation, the availability of energy resources, energy market structures, national strategies and policies were compared using PESTEL analysis.

Suggested Citation

  • Marcin Cholewa & Farid Mammadov & Agnieszka Nowaczek, 2022. "The obstacles and challenges of transition towards a renewable and sustainable energy system in Azerbaijan and Poland," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(1), pages 155-169, March.
  • Handle: RePEc:spr:minecn:v:35:y:2022:i:1:d:10.1007_s13563-021-00288-x
    DOI: 10.1007/s13563-021-00288-x

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Yoshino, Naoyuki & Taghizadeh–Hesary, Farhad & Nakahigashi, Masaki, 2019. "Modelling the social funding and spill-over tax for addressing the green energy financing gap," Economic Modelling, Elsevier, vol. 77(C), pages 34-41.
    2. Vidadili, Nurtaj & Suleymanov, Elchin & Bulut, Cihan & Mahmudlu, Ceyhun, 2017. "Transition to renewable energy and sustainable energy development in Azerbaijan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1153-1161.
    3. Madsen, Herle Mo & Brown, Rebekah & Elle, Morten & Mikkelsen, Peter Steen, 2017. "Social construction of stormwater control measures in Melbourne and Copenhagen: A discourse analysis of technological change, embedded meanings and potential mainstreaming," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 198-209.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.
    2. Sabina Kordana-Obuch & Mariusz Starzec, 2022. "Horizontal Shower Heat Exchanger as an Effective Domestic Hot Water Heating Alternative," Energies, MDPI, vol. 15(13), pages 1-22, July.
    3. Kofi Nyarko & Jonathan Whale & Tania Urmee, 2023. "Empowering Low-Income Communities with Sustainable Decentralized Renewable Energy-Based Mini-Grids," Energies, MDPI, vol. 16(23), pages 1-31, November.
    4. Spyridoula Karavida & Angeliki Peponi, 2023. "Wind Turbine Blade Waste Circularity Coupled with Urban Regeneration: A Conceptual Framework," Energies, MDPI, vol. 16(3), pages 1-17, February.
    5. Agnieszka Izabela Baruk & Anna Goliszek, 2022. "The Associations of Young Poles with Green Energy in the Context of Self-Assessment of Their Relevant Knowledge and the Importance Attached to the Energy Sources Used," Energies, MDPI, vol. 15(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skare, Marinko & Gavurova, Beata & Sinkovic, Dean, 2023. "Regional aspects of financial development and renewable energy: A cross-sectional study in 214 countries," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1142-1157.
    2. Xu, Jiajun & Ru, Xinshun & Song, Pengcheng, 2021. "Can a new model of infrastructure financing mitigate credit rationing in poorly governed countries?," Economic Modelling, Elsevier, vol. 95(C), pages 111-120.
    3. Yao, Shouyu & Pan, Yuying & Sensoy, Ahmet & Uddin, Gazi Salah & Cheng, Feiyang, 2021. "Green credit policy and firm performance: What we learn from China," Energy Economics, Elsevier, vol. 101(C).
    4. Mumtaz, Muhammad Zubair & Yoshino, Naoyuki, 2021. "Greenness index: IPO performance and portfolio allocation," Research in International Business and Finance, Elsevier, vol. 57(C).
    5. Jeyhun I. Mikayilov & Fakhri J. Hasanov & Carlo A. Bollino & Ceyhun Mahmudlu, 2017. "Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach," Energies, MDPI, vol. 10(11), pages 1-12, November.
    6. Danilo Liberati & Giuseppe Marinelli, 2022. "Everything you always wanted to know about green bonds (but were afraid to ask)," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Statistics for Sustainable Finance, volume 56, Bank for International Settlements.
    7. Abdul Mansoor & Baserat Sultana, 2018. "Impact of Population, GDP and Energy Consumption on Carbon Emissions: Evidence from Pakistan Using an Analytic Tool IPAT," Asian Journal of Economics and Empirical Research, Asian Online Journal Publishing Group, vol. 5(2), pages 183-190.
    8. Kong, Qunxi & Shen, Chenrong & Li, Rongrong & Wong, Zoey, 2021. "High-speed railway opening and urban green productivity in the post-COVID-19: Evidence from green finance," Global Finance Journal, Elsevier, vol. 49(C).
    9. Abbas Mardani & Dalia Streimikiene & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Mehrbakhsh Nilashi & Ahmad Jusoh & Habib Zare, 2017. "Application of Structural Equation Modeling (SEM) to Solve Environmental Sustainability Problems: A Comprehensive Review and Meta-Analysis," Sustainability, MDPI, vol. 9(10), pages 1-65, October.
    10. Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki & Inagaki, Yugo & Morgan, Peter J., 2021. "Analyzing the factors influencing the demand and supply of solar modules in Japan – Does financing matter," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 1-12.
    11. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    13. Johnathon, Chris & Agalgaonkar, Ashish Prakash & Planiden, Chayne & Kennedy, Joel, 2023. "A proposed hedge-based energy market model to manage renewable intermittency," Renewable Energy, Elsevier, vol. 207(C), pages 376-384.
    14. Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki, 2019. "The way to induce private participation in green finance and investment," Finance Research Letters, Elsevier, vol. 31(C), pages 98-103.
    15. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Olexandr Yemelyanov & Anastasiya Symak & Tetyana Petrushka & Roman Lesyk & Lilia Lesyk, 2018. "Evaluation of the Adaptability of the Ukrainian Economy to Changes in Prices for Energy Carriers and to Energy Market Risks," Energies, MDPI, vol. 11(12), pages 1-34, December.
    17. Li, Zeyun & Kuo, Tsung-Hsien & Siao-Yun, Wei & The Vinh, Luu, 2022. "Role of green finance, volatility and risk in promoting the investments in Renewable Energy Resources in the post-covid-19," Resources Policy, Elsevier, vol. 76(C).
    18. Farhad Taghizadeh-Hesary & Naoyuki Yoshino, 2020. "Sustainable Solutions for Green Financing and Investment in Renewable Energy Projects," Energies, MDPI, vol. 13(4), pages 1-18, February.
    19. Su, Yun Hsuan & Rizvi, Syed Kumail Abbas & Umar, Muhammad & Chang, Hsuling, 2023. "Unveiling the relationship between oil and green bonds: Spillover dynamics and implications," Energy Economics, Elsevier, vol. 127(PA).
    20. Li, Weiqing & Chien, Fengsheng & Ngo, Quang-Thanh & Nguyen, Tien-Dung & Iqbal, Sajid & Bilal, Ahmad Raza, 2021. "Vertical financial disparity, energy prices and emission reduction: Empirical insights from Pakistan," MPRA Paper 109672, University Library of Munich, Germany.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:35:y:2022:i:1:d:10.1007_s13563-021-00288-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.