IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i2d10.1007_s11009-025-10175-5.html
   My bibliography  Save this article

Asymptotic Properties of the Estimators in Mildly Stable Unit Root Process

Author

Listed:
  • Xiyao Zhang

    (Nanjing University of Aeronautics and Astronautics)

  • Hui Jiang

    (Nanjing University of Aeronautics and Astronautics)

  • Weilin Xiao

    (Zhejiang University)

  • Weigang Wang

    (Zhejiang Gongshang University)

Abstract

In this paper, we study asymptotic properties of the Yule-Walker estimator and ordinary least squares (OLS) estimator in a mildly stable unit root process with Gaussian noise. By the change of measure method and asymptotic analysis technique, we establish the exponential nonuniform Berry-Esseen bounds of the two estimators. As applications, the optimal uniform Berry-Esseen bounds and optimal Cramér-type moderate deviation principles can be obtained.

Suggested Citation

  • Xiyao Zhang & Hui Jiang & Weilin Xiao & Weigang Wang, 2025. "Asymptotic Properties of the Estimators in Mildly Stable Unit Root Process," Methodology and Computing in Applied Probability, Springer, vol. 27(2), pages 1-22, June.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10175-5
    DOI: 10.1007/s11009-025-10175-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-025-10175-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-025-10175-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaohu & Yu, Jun, 2016. "Double asymptotics for explosive continuous time models," Journal of Econometrics, Elsevier, vol. 193(1), pages 35-53.
    2. Liudas Giraitis & Peter C. B. Phillips, 2006. "Uniform Limit Theory for Stationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 51-60, January.
    3. Phillips, Peter C B, 1988. "Regression Theory for Near-Integrated Time Series," Econometrica, Econometric Society, vol. 56(5), pages 1021-1043, September.
    4. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    5. Phillips, Peter C.B. & Magdalinos, Tassos & Giraitis, Liudas, 2010. "Smoothing local-to-moderate unit root theory," Journal of Econometrics, Elsevier, vol. 158(2), pages 274-279, October.
    6. Phillips, Peter C B, 1977. "Approximations to Some Finite Sample Distributions Associated with a First-Order Stochastic Difference Equation," Econometrica, Econometric Society, vol. 45(2), pages 463-485, March.
    7. Yu Miao & Yanling Wang & Guangyu Yang, 2015. "Moderate Deviation Principles for Empirical Covariance in the Neighbourhood of the Unit Root," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 234-255, March.
    8. Satchell, Stephen Ellwood, 1984. "Approximation to the Finite Sample Distribution for Nonstable First Order Stochastic Difference Equations," Econometrica, Econometric Society, vol. 52(5), pages 1271-1289, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, Peter C.B. & Magdalinos, Tassos & Giraitis, Liudas, 2010. "Smoothing local-to-moderate unit root theory," Journal of Econometrics, Elsevier, vol. 158(2), pages 274-279, October.
    2. Nannan Ma & Hailin Sang & Guangyu Yang, 2023. "Least absolute deviation estimation for AR(1) processes with roots close to unity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 799-832, October.
    3. Xinghui Wang & Wenjing Geng & Ruidong Han & Qifa Xu, 2023. "Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-23, March.
    4. Yabe, Ryota, 2017. "Asymptotic distribution of the conditional-sum-of-squares estimator under moderate deviation from a unit root in MA(1)," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 220-226.
    5. Chevillon, Guillaume & Mavroeidis, Sophocles, 2011. "Learning generates Long Memory," ESSEC Working Papers WP1113, ESSEC Research Center, ESSEC Business School.
    6. Jardet, Caroline & Monfort, Alain & Pegoraro, Fulvio, 2013. "No-arbitrage Near-Cointegrated VAR(p) term structure models, term premia and GDP growth," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 389-402.
    7. Yixiao Sun, 2014. "Fixed-smoothing Asymptotics and AsymptoticFandtTests in the Presence of Strong Autocorrelation," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 23-63, Emerald Group Publishing Limited.
    8. Stephan Smeekes & Joakim Westerlund, 2019. "Robust block bootstrap panel predictability tests," Econometric Reviews, Taylor & Francis Journals, vol. 38(9), pages 1089-1107, October.
    9. Yijie Fei & Yiu Lim Lui & Jun Yu, 2024. "Testing Predictability in the Presence of Persistent Errors," Working Papers 202401, University of Macau, Faculty of Business Administration.
    10. Christis Katsouris, 2023. "Limit Theory under Network Dependence and Nonstationarity," Papers 2308.01418, arXiv.org, revised Aug 2023.
    11. Andrews, Donald W.K. & Guggenberger, Patrik, 2012. "Asymptotics for LS, GLS, and feasible GLS statistics in an AR(1) model with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 169(2), pages 196-210.
    12. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    13. Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.
    14. Christis Katsouris, 2023. "Bootstrapping Nonstationary Autoregressive Processes with Predictive Regression Models," Papers 2307.14463, arXiv.org.
    15. Mukhtar M. Ali, 1996. "Distribution of the Least Squares Estimator in a First-Order Autoregressive Model," Econometrics 9610004, University Library of Munich, Germany.
    16. Lieberman, Offer & Phillips, Peter C.B., 2020. "Hybrid stochastic local unit roots," Journal of Econometrics, Elsevier, vol. 215(1), pages 257-285.
    17. Marie Badreau & Frédéric Proïa, 2023. "Consistency and asymptotic normality in a class of nearly unstable processes," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 619-641, October.
    18. Peter C.B. Phillips & Tassos Magadalinos, 2005. "Limit Theory for Moderate Deviations from a Unit Root under Weak Dependence," Cowles Foundation Discussion Papers 1517, Cowles Foundation for Research in Economics, Yale University.
    19. Wang, Ying & Phillips, Peter C.B. & Tu, Yundong, 2025. "Limit theory and inference in non-cointegrated functional coefficient regression," Journal of Econometrics, Elsevier, vol. 249(PB).
    20. Bykhovskaya, Anna & Phillips, Peter C.B., 2020. "Point optimal testing with roots that are functionally local to unity," Journal of Econometrics, Elsevier, vol. 219(2), pages 231-259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10175-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.