IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i1d10.1007_s11009-023-10063-w.html
   My bibliography  Save this article

The Multivariate Generalized Linear Hawkes Process in High Dimensions with Applications in Neuroscience

Author

Listed:
  • Masoumeh Fallahi

    (Allameh Tabataba’i University)

  • Reza Pourtaheri

    (Allameh Tabataba’i University)

  • Farzad Eskandari

    (Allameh Tabataba’i University)

Abstract

The Hawkes process models have been recently become a popular tool for modeling and analysis of neural spike trains. In this article, motivated by neuronal spike trains study, we propose a novel multivariate generalized linear Hawkes process model, where covariates are included in the intensity function. We consider the problem of simultaneous variable selection and estimation for the multivariate generalized linear Hawkes process in the high-dimensional regime. Estimation of the intensity function of the high-dimensional point process is considered within a nonparametric framework, applying B-splines and the SCAD penalty for matters of sparsity. We apply the Doob-Kolmogorov inequality and the martingale central limit theory to establish the consistency and asymptotic normality of the resulting estimators. Finally, we illustrate the performance of our proposal through simulation and demonstrate its utility by applying it to the neuron spike train data set.

Suggested Citation

  • Masoumeh Fallahi & Reza Pourtaheri & Farzad Eskandari, 2024. "The Multivariate Generalized Linear Hawkes Process in High Dimensions with Applications in Neuroscience," Methodology and Computing in Applied Probability, Springer, vol. 26(1), pages 1-25, March.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:1:d:10.1007_s11009-023-10063-w
    DOI: 10.1007/s11009-023-10063-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-10063-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-10063-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Takashi Yoshida & Kenichi Ohki, 2020. "Natural images are reliably represented by sparse and variable populations of neurons in visual cortex," Nature Communications, Nature, vol. 11(1), pages 1-19, December.
    4. Patrick O. Perry & Patrick J. Wolfe, 2013. "Point process modelling for directed interaction networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 821-849, November.
    5. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    6. Chiang, Wen-Hao & Liu, Xueying & Mohler, George, 2022. "Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates," International Journal of Forecasting, Elsevier, vol. 38(2), pages 505-520.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    2. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    3. Boswijk, H. Peter & Laeven, Roger J.A. & Yang, Xiye, 2018. "Testing for self-excitation in jumps," Journal of Econometrics, Elsevier, vol. 203(2), pages 256-266.
    4. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    5. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    6. Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org, revised Dec 2024.
    7. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    8. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    9. Sobin Joseph & Shashi Jain, 2023. "A neural network based model for multi-dimensional nonlinear Hawkes processes," Papers 2303.03073, arXiv.org.
    10. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    11. Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
    12. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    13. Youngsoo Seol, 2023. "Large Deviations for Hawkes Processes with Randomized Baseline Intensity," Mathematics, MDPI, vol. 11(8), pages 1-10, April.
    14. Stindl, Tom & Chen, Feng, 2018. "Likelihood based inference for the multivariate renewal Hawkes process," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 131-145.
    15. Achraf Bahamou & Maud Doumergue & Philippe Donnat, 2019. "Hawkes processes for credit indices time series analysis: How random are trades arrival times?," Papers 1902.03714, arXiv.org.
    16. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.
    17. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    18. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
    19. Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
    20. Chen, Zezhun & Dassios, Angelos, 2022. "Cluster point processes and Poisson thinning INARMA," LSE Research Online Documents on Economics 113652, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:1:d:10.1007_s11009-023-10063-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.