IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v116y2024icp1-26.html
   My bibliography  Save this article

A Hawkes model with CARMA(p,q) intensity

Author

Listed:
  • Mercuri, Lorenzo
  • Perchiazzo, Andrea
  • Rroji, Edit

Abstract

In this paper we introduce a new model, named CARMA(p,q)-Hawkes, as the Hawkes model with exponential kernel implies a strictly decreasing behavior of the autocorrelation function while empirical evidences reject its monotonicity. The proposed model is a Hawkes process where the intensity follows a Continuous Time Autoregressive Moving Average (CARMA) process. We also study the conditions for the stationarity and the positivity of the intensity and the strong mixing property for the increments. Furthermore, we present two estimation case studies based respectively on the likelihood and on the autocorrelation function.

Suggested Citation

  • Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
  • Handle: RePEc:eee:insuma:v:116:y:2024:i:c:p:1-26
    DOI: 10.1016/j.insmatheco.2024.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724000180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    2. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    3. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    4. Bessy-Roland, Yannick & Boumezoued, Alexandre & Hillairet, Caroline, 2021. "Multivariate Hawkes process for cyber insurance," Annals of Actuarial Science, Cambridge University Press, vol. 15(1), pages 14-39, March.
    5. Brockwell, Peter J. & Davis, Richard A. & Yang, Yu, 2011. "Estimation for Non-Negative Lévy-Driven CARMA Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 250-259.
    6. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    7. Stefano M. Iacus & Lorenzo Mercuri & Edit Rroji, 2018. "Discrete‐Time Approximation of a Cogarch(p,q) Model and its Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(5), pages 787-809, September.
    8. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    9. Benth, Fred Espen & Klüppelberg, Claudia & Müller, Gernot & Vos, Linda, 2014. "Futures pricing in electricity markets based on stable CARMA spot models," Energy Economics, Elsevier, vol. 44(C), pages 392-406.
    10. Hillairet, Caroline & Réveillac, Anthony & Rosenbaum, Mathieu, 2023. "An expansion formula for Hawkes processes and application to cyber-insurance derivatives," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 89-119.
    11. Clinet, Simon & Yoshida, Nakahiro, 2017. "Statistical inference for ergodic point processes and application to Limit Order Book," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1800-1839.
    12. Laurent Lesage & Madalina Deaconu & Antoine Lejay & Jorge Augusto Meira & Geoffrey Nichil & Radu State, 2022. "Hawkes Processes Framework With a Gamma Density As Excitation Function: Application to Natural Disasters for Insurance," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2509-2537, December.
    13. Cattiaux, Patrick & Colombani, Laetitia & Costa, Manon, 2022. "Limit theorems for Hawkes processes including inhibition," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 404-426.
    14. José Da Fonseca & Riadh Zaatour, 2014. "Hawkes Process: Fast Calibration, Application to Trade Clustering, and Diffusive Limit," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(6), pages 548-579, June.
    15. Ioane Muni Toke & Nakahiro Yoshida, 2017. "Modelling intensities of order flows in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 683-701, May.
    16. Peter J. Brockwell & Richard A. Davis & Yu Yang, 2011. "Estimation for Non-Negative Lévy-Driven CARMA Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 250-259, April.
    17. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    18. P. Brockwell, 2001. "Lévy-Driven Carma Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 113-124, March.
    19. Arne Andresen & Fred Espen Benth & Steen Koekebakker & Valeriy Zakamulin, 2014. "The Carma Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-27.
    20. Marquardt, Tina & Stelzer, Robert, 2007. "Multivariate CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 96-120, January.
    21. Stefano Iacus & Lorenzo Mercuri, 2015. "Implementation of Lévy CARMA model in Yuima package," Computational Statistics, Springer, vol. 30(4), pages 1111-1141, December.
    22. Henghsiu Tsai & K. S. Chan, 2005. "A note on non‐negative continuous time processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 589-597, September.
    23. Zailei Cheng & Youngsoo Seol, 2020. "Diffusion Approximation of a Risk Model with Non-Stationary Hawkes Arrivals of Claims," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 555-571, June.
    24. Chiang, Wen-Hao & Liu, Xueying & Mohler, George, 2022. "Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates," International Journal of Forecasting, Elsevier, vol. 38(2), pages 505-520.
    25. Iacus, Stefano M. & Mercuri, Lorenzo & Rroji, Edit, 2017. "COGARCH(p, q): Simulation and Inference with the yuima Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i04).
    26. Boswijk, H. Peter & Laeven, Roger J.A. & Yang, Xiye, 2018. "Testing for self-excitation in jumps," Journal of Econometrics, Elsevier, vol. 203(2), pages 256-266.
    27. Laurent Lesage & Madalina Deaconu & Antoine Lejay & Jorge Augusto Meira & Geoffrey Nichil & Radu State, 2022. "Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance," Post-Print hal-03040090, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Mercuri & Andrea Perchiazzo & Edit Rroji, 2020. "Finite Mixture Approximation of CARMA(p,q) Models," Papers 2005.10130, arXiv.org, revised May 2020.
    2. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    3. Kyungsub Lee, 2024. "Discrete Hawkes process with flexible residual distribution and filtered historical simulation," Papers 2401.13890, arXiv.org.
    4. Péter Kevei, 2018. "Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 467-487, April.
    5. Basse-O’Connor, Andreas & Nielsen, Mikkel Slot & Pedersen, Jan & Rohde, Victor, 2019. "Multivariate stochastic delay differential equations and CAR representations of CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4119-4143.
    6. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    7. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    8. Benth, Fred Espen & Karbach, Sven, 2023. "Multivariate continuous-time autoregressive moving-average processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 299-337.
    9. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    10. Sikora, Grzegorz & Michalak, Anna & Bielak, Łukasz & Miśta, Paweł & Wyłomańska, Agnieszka, 2019. "Stochastic modeling of currency exchange rates with novel validation techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1202-1215.
    11. Da Fonseca, José & Malevergne, Yannick, 2021. "A simple microstructure model based on the Cox-BESQ process with application to optimal execution policy," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    12. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    13. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    14. Laurent Lesage & Madalina Deaconu & Antoine Lejay & Jorge Augusto Meira & Geoffrey Nichil & Radu State, 2020. "Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance," Working Papers hal-03040090, HAL.
    15. Laurent Lesage & Madalina Deaconu & Antoine Lejay & Jorge Augusto Meira & Geoffrey Nichil & Radu State, 2022. "Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance," Post-Print hal-03040090, HAL.
    16. Simon Clinet & Yoann Potiron, 2016. "Statistical inference for the doubly stochastic self-exciting process," Papers 1607.05831, arXiv.org, revised Jun 2017.
    17. Simon Clinet & William T. M. Dunsmuir & Gareth W. Peters & Kylie-Anne Richards, 2021. "Asymptotic distribution of the score test for detecting marks in hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 635-668, October.
    18. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. José Da Fonseca & Riadh Zaatour, 2017. "Correlation and Lead–Lag Relationships in a Hawkes Microstructure Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(3), pages 260-285, March.
    20. Szarek, Dawid & Bielak, Łukasz & Wyłomańska, Agnieszka, 2020. "Long-term prediction of the metals’ prices using non-Gaussian time-inhomogeneous stochastic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).

    More about this item

    Keywords

    Point processes; Autocorrelation; CARMA; Hawkes; Infinitesimal generator; Markov process;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:116:y:2024:i:c:p:1-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.