IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v11y2009i3d10.1007_s11009-009-9123-9.html
   My bibliography  Save this article

Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities

Author

Listed:
  • Claude Lefèvre

    (Université Libre de Bruxelles)

  • Stéphane Loisel

    (Université de Lyon)

Abstract

An important question in insurance is how to evaluate the probabilities of (non-) ruin of a company over any given horizon of finite length. This paper aims to present some (not all) useful methods that have been proposed so far for computing, or approximating, these probabilities in the case of discrete claim severities. The starting model is the classical compound Poisson risk model with constant premium and independent and identically distributed claim severities. Two generalized versions of the model are then examined. The former incorporates a non-constant premium function and a non-stationary claim process. The latter takes into account a possible interdependence between the successive claim severities. Special attention will be paid to a recursive computational method that enables us to tackle, in a simple and unified way, the different models under consideration. The approach, still relatively little known, relies on the use of remarkable families of polynomials which are of Appell or generalized Appell (Sheffer) types. The case with dependent claim severities will be revisited accordingly.

Suggested Citation

  • Claude Lefèvre & Stéphane Loisel, 2009. "Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 425-441, September.
  • Handle: RePEc:spr:metcap:v:11:y:2009:i:3:d:10.1007_s11009-009-9123-9
    DOI: 10.1007/s11009-009-9123-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-009-9123-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-009-9123-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rulliere, Didier & Loisel, Stephane, 2004. "Another look at the Picard-Lefevre formula for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 187-203, October.
    2. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2008. "Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 746-762, April.
    3. Biard, Romain & Lefèvre, Claude & Loisel, Stéphane, 2008. "Impact of correlation crises in risk theory: Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 412-421, December.
    4. Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
    5. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    6. Romain Biard & Claude Lefèvre & Stéphane Loisel, 2008. "Impact of correlation crises in risk theory," Post-Print hal-00308782, HAL.
    7. Stéphane Loisel & Nicolas Privault, 2009. "Sensitivity analysis and density estimation for finite-time ruin probabilities," Post-Print hal-00201347, HAL.
    8. Ignatov, Zvetan G. & Kaishev, Vladimir K. & Krachunov, Rossen S., 2001. "An improved finite-time ruin probability formula and its Mathematica implementation," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 375-386, December.
    9. De Vylder, F. & Goovaerts, M. J., 1988. "Recursive calculation of finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 7(1), pages 1-7, January.
    10. Dickson, David C. M. & Waters, Howard R., 1991. "Recursive Calculation of Survival Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 21(2), pages 199-221, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goffard, Pierre-Olivier & Lefèvre, Claude, 2018. "Duality in ruin problems for ordered risk models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 44-52.
    2. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Zhao, Shouqi, 2016. "On the evaluation of finite-time ruin probabilities in a dependent risk model," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 268-286.
    3. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    4. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    5. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    6. Andrius Grigutis & Jonas Šiaulys, 2020. "Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model," Mathematics, MDPI, vol. 8(2), pages 1-30, January.
    7. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2017. "On the First Crossing of Two Boundaries by an Order Statistics Risk Process," Risks, MDPI, vol. 5(3), pages 1-14, August.
    8. Claude Lefèvre & Philippe Picard, 2014. "Ruin Probabilities for Risk Models with Ordered Claim Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 885-905, December.
    9. Pierre-Olivier Goffard, 2019. "Fraud risk assessment within blockchain transactions," Working Papers hal-01716687, HAL.
    10. Mathieu Bargès & Stéphane Loisel & Xavier Venel, 2011. "On finite-time ruin probabilities with reinsurance cycles influenced by large claims," Post-Print hal-00430178, HAL.
    11. Pierre-Olivier Goffard & Claude Lefèvre, 2018. "Duality in ruin problems for ordered risk models," Post-Print hal-01398910, HAL.
    12. Lefèvre, Claude & Picard, Philippe, 2011. "A new look at the homogeneous risk model," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 512-519.
    13. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    14. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2019. "Ruin and Deficit Under Claim Arrivals with the Order Statistics Property," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 511-530, June.
    15. Pierre-O. Goffard, 2019. "Fraud risk assessment within blockchain transactions," Post-Print hal-01716687, HAL.
    16. Bihao Su & Chenglong Xu & Jingchao Li, 2022. "A Deep Neural Network Approach to Solving for Seal’s Type Partial Integro-Differential Equation," Mathematics, MDPI, vol. 10(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    2. Li Qin & Susan M. Pitts, 2012. "Nonparametric Estimation of the Finite-Time Survival Probability with Zero Initial Capital in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 919-936, December.
    3. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    4. Stéphane Loisel & Claude Lefèvre, 2009. "Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities," Post-Print hal-00201377, HAL.
    5. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    6. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
    7. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    8. Edita Kizinevič & Jonas Šiaulys, 2018. "The Exponential Estimate of the Ultimate Ruin Probability for the Non-Homogeneous Renewal Risk Model," Risks, MDPI, vol. 6(1), pages 1-17, March.
    9. Andrius Grigutis & Jonas Šiaulys, 2020. "Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model," Mathematics, MDPI, vol. 8(2), pages 1-30, January.
    10. Li, Shuanming & Lu, Yi, 2017. "Distributional study of finite-time ruin related problems for the classical risk model," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 319-330.
    11. Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100, arXiv.org, revised Feb 2011.
    12. Claude Lefèvre & Philippe Picard, 2013. "Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach," Risks, MDPI, vol. 1(3), pages 1-21, December.
    13. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2008. "Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 746-762, April.
    14. Loisel, Stéphane & Milhaud, Xavier, 2011. "From deterministic to stochastic surrender risk models: Impact of correlation crises on economic capital," European Journal of Operational Research, Elsevier, vol. 214(2), pages 348-357, October.
    15. Cardoso, Rui M. R. & R. Waters, Howard, 2003. "Recursive calculation of finite time ruin probabilities under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 659-676, December.
    16. Muhsin Tamturk & Sergey Utev, 2019. "Optimal Reinsurance via Dirac-Feynman Approach," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 647-659, June.
    17. Yi Lu, 2016. "On the Evaluation of Expected Penalties at Claim Instants That Cause Ruin in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 237-255, March.
    18. He, Yue & Kawai, Reiichiro, 2022. "Moment and polynomial bounds for ruin-related quantities in risk theory," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1255-1271.
    19. Egidio dos Reis, Alfredo D., 2000. "On the moments of ruin and recovery times," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 331-343, December.
    20. Geoffrey Nichil & Pierre Vallois, 2019. "Solvency Need Resulting from Reserving Risk in a ORSA Context," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 567-592, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:11:y:2009:i:3:d:10.1007_s11009-009-9123-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.