IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v66y2007i2p203-224.html
   My bibliography  Save this article

The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function

Author

Listed:
  • Hsien-Chung Wu

Abstract

The Karush-Kuhn-Tucker (KKT) conditions for an optimization problem with fuzzy-valued objective function are derived in this paper. A solution concept of this optimization problem is proposed by considering an ordering relation on the class of all fuzzy numbers. The solution concept proposed in this paper will follow from the similar solution concept, called non-dominated solution, in the multiobjective programming problem. In order to consider the differentiation of a fuzzy-valued function, we use the Hausdorff metric to define the distance between two fuzzy numbers and the Hukuhara difference to define the difference of two fuzzy numbers. Under these settings, the KKT optimality conditions are elicited naturally by introducing the Lagrange function multipliers. Copyright Springer-Verlag 2007

Suggested Citation

  • Hsien-Chung Wu, 2007. "The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 203-224, October.
  • Handle: RePEc:spr:mathme:v:66:y:2007:i:2:p:203-224
    DOI: 10.1007/s00186-007-0156-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-007-0156-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-007-0156-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaojie Zhang & Mahdi Hasanipanah & Biao He & Ahmad Safuan A. Rashid & Dmitrii Vladimirovich Ulrikh & Qiancheng Fang, 2022. "An Optimized Clustering Approach to Investigate the Main Features in Predicting the Punching Shear Capacity of Steel Fiber-Reinforced Concrete," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    2. Yating Guo & Guoju Ye & Wei Liu & Dafang Zhao & Savin Treanţǎ, 2021. "Optimality Conditions and Duality for a Class of Generalized Convex Interval-Valued Optimization Problems," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
    3. R. Osuna-Gómez & B. Hernández-Jiménez & Y. Chalco-Cano & G. Ruiz-Garzón, 2018. "Different optimum notions for fuzzy functions and optimality conditions associated," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 177-193, June.
    4. Savin Treanţă & Tareq Saeed, 2023. "On Weak Variational Control Inequalities via Interval Analysis," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
    5. A. Rufián-Lizana & Y. Chalco-Cano & G. Ruiz-Garzón & H. Román-Flores, 2014. "On some characterizations of preinvex fuzzy mappings," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 771-783, July.
    6. Agarwal, Deepika & Singh, Pitam & El Sayed, M.A., 2023. "The Karush–Kuhn–Tucker (KKT) optimality conditions for fuzzy-valued fractional optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 861-877.
    7. Shi, Fangfang & Ye, Guoju & Liu, Wei & Zhao, Dafang, 2023. "A class of nonconvex fuzzy optimization problems under granular differentiability concept," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 430-444.
    8. Fabiola Roxana Villanueva & Valeriano Antunes Oliveira, 2022. "Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 896-923, September.
    9. U. M. Pirzada & V. D. Pathak, 2013. "Newton Method for Solving the Multi-Variable Fuzzy Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 867-881, March.
    10. Guo, Yating & Ye, Guoju & Liu, Wei & Zhao, Dafang & Treanţă, Savin, 2022. "On symmetric gH-derivative: Applications to dual interval-valued optimization problems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    12. Nanxiang Yu & Dong Qiu, 2017. "The Karush-Kuhn-Tucker Optimality Conditions for the Fuzzy Optimization Problems in the Quotient Space of Fuzzy Numbers," Complexity, Hindawi, vol. 2017, pages 1-8, August.
    13. Guo, Yating & Ye, Guoju & Liu, Wei & Zhao, Dafang & Treanţǎ, Savin, 2023. "Solving nonsmooth interval optimization problems based on interval-valued symmetric invexity," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Tadeusz Antczak, 2023. "Optimality conditions for invex nonsmooth optimization problems with fuzzy objective functions," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 1-21, March.
    15. Rekha R. Jaichander & Izhar Ahmad & Krishna Kummari & Suliman Al-Homidan, 2022. "Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    16. Zhang, Chuang-liang & Huang, Nan-jing & O’Regan, Donal, 2023. "On variational methods for interval-valued functions with some applications," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    17. Md Sadikur Rahman & Ali Akbar Shaikh & Irfan Ali & Asoke Kumar Bhunia & Armin Fügenschuh, 2021. "A Theoretical Framework for Optimality Conditions of Nonlinear Type-2 Interval-Valued Unconstrained and Constrained Optimization Problems Using Type-2 Interval Order Relations," Mathematics, MDPI, vol. 9(8), pages 1-22, April.
    18. Lifeng Li, 2023. "Optimality conditions for nonlinear optimization problems with interval-valued objective function in admissible orders," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 247-265, June.
    19. T. Antczak, 2018. "Exactness Property of the Exact Absolute Value Penalty Function Method for Solving Convex Nondifferentiable Interval-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 205-224, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    2. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    3. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    4. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    5. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    6. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    7. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    8. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    9. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    10. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    11. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    12. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    13. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    14. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    15. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    16. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    17. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    18. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    19. V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 6(3), pages 60-75, March.
    20. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:66:y:2007:i:2:p:203-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.