IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1242841.html
   My bibliography  Save this article

The Karush-Kuhn-Tucker Optimality Conditions for the Fuzzy Optimization Problems in the Quotient Space of Fuzzy Numbers

Author

Listed:
  • Nanxiang Yu
  • Dong Qiu

Abstract

We propose the solution concepts for the fuzzy optimization problems in the quotient space of fuzzy numbers. The Karush-Kuhn-Tucker (KKT) optimality conditions are elicited naturally by introducing the Lagrange function multipliers. The effectiveness is illustrated by examples.

Suggested Citation

  • Nanxiang Yu & Dong Qiu, 2017. "The Karush-Kuhn-Tucker Optimality Conditions for the Fuzzy Optimization Problems in the Quotient Space of Fuzzy Numbers," Complexity, Hindawi, vol. 2017, pages 1-8, August.
  • Handle: RePEc:hin:complx:1242841
    DOI: 10.1155/2017/1242841
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/1242841.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/1242841.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/1242841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Panigrahi, Motilal & Panda, Geetanjali & Nanda, Sudarsan, 2008. "Convex fuzzy mapping with differentiability and its application in fuzzy optimization," European Journal of Operational Research, Elsevier, vol. 185(1), pages 47-62, February.
    3. Geetanjali Panda & Motilal Panigrahi & Sudarsan Nanda, 2006. "Equivalence class in the set of fuzzy numbers and its application in decision-making problems," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2006, pages 1-19, August.
    4. Hsien-Chung Wu, 2007. "The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 203-224, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Osuna-Gómez & B. Hernández-Jiménez & Y. Chalco-Cano & G. Ruiz-Garzón, 2018. "Different optimum notions for fuzzy functions and optimality conditions associated," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 177-193, June.
    2. Agarwal, Deepika & Singh, Pitam & El Sayed, M.A., 2023. "The Karush–Kuhn–Tucker (KKT) optimality conditions for fuzzy-valued fractional optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 861-877.
    3. Md Sadikur Rahman & Ali Akbar Shaikh & Irfan Ali & Asoke Kumar Bhunia & Armin Fügenschuh, 2021. "A Theoretical Framework for Optimality Conditions of Nonlinear Type-2 Interval-Valued Unconstrained and Constrained Optimization Problems Using Type-2 Interval Order Relations," Mathematics, MDPI, vol. 9(8), pages 1-22, April.
    4. U. M. Pirzada & V. D. Pathak, 2013. "Newton Method for Solving the Multi-Variable Fuzzy Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 867-881, March.
    5. Tadeusz Antczak, 2023. "Optimality conditions for invex nonsmooth optimization problems with fuzzy objective functions," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 1-21, March.
    6. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    7. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    8. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    9. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    10. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    11. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    12. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    13. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    14. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    15. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    16. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    17. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    18. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    19. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    20. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1242841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.