IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v211y2023icp430-444.html
   My bibliography  Save this article

A class of nonconvex fuzzy optimization problems under granular differentiability concept

Author

Listed:
  • Shi, Fangfang
  • Ye, Guoju
  • Liu, Wei
  • Zhao, Dafang

Abstract

The aim of this paper is to study a class of nonconvex optimization problems with fuzzy objective functions under granular differentiability concept. In order to get it, we give the definition of granular preinvex fuzzy functions and discuss its fascinating characteristics. In particular, two necessary and sufficient conditions for granular differentiable fuzzy functions to be granular preinvex are proved. As an application of granular preinvex fuzzy functions, we study a class of nonconvex fuzzy optimization problems with constraints, and obtain the existence of the optimal solution by solving the fuzzy variational inequalities. In addition, the developed theory is illustrated by some numerical examples.

Suggested Citation

  • Shi, Fangfang & Ye, Guoju & Liu, Wei & Zhao, Dafang, 2023. "A class of nonconvex fuzzy optimization problems under granular differentiability concept," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 430-444.
  • Handle: RePEc:eee:matcom:v:211:y:2023:i:c:p:430-444
    DOI: 10.1016/j.matcom.2023.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423001763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Hsien-Chung, 2007. "The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function," European Journal of Operational Research, Elsevier, vol. 176(1), pages 46-59, January.
    2. Hsien-Chung Wu, 2007. "The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 203-224, October.
    3. Saima Rashid & Elbaz I. Abouelmagd & Sobia Sultana & Yu-Ming Chu, 2022. "NEW DEVELOPMENTS IN WEIGHTED n-FOLD TYPE INEQUALITIES VIA DISCRETE GENERALIZED â„ Ì‚-PROPORTIONAL FRACTIONAL OPERATORS," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(02), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Rufián-Lizana & Y. Chalco-Cano & G. Ruiz-Garzón & H. Román-Flores, 2014. "On some characterizations of preinvex fuzzy mappings," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 771-783, July.
    2. Zhang, Chuang-liang & Huang, Nan-jing & O’Regan, Donal, 2023. "On variational methods for interval-valued functions with some applications," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Md Sadikur Rahman & Ali Akbar Shaikh & Irfan Ali & Asoke Kumar Bhunia & Armin Fügenschuh, 2021. "A Theoretical Framework for Optimality Conditions of Nonlinear Type-2 Interval-Valued Unconstrained and Constrained Optimization Problems Using Type-2 Interval Order Relations," Mathematics, MDPI, vol. 9(8), pages 1-22, April.
    4. U. M. Pirzada & V. D. Pathak, 2013. "Newton Method for Solving the Multi-Variable Fuzzy Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 867-881, March.
    5. Savin Treanţă & Tareq Saeed, 2023. "On Weak Variational Control Inequalities via Interval Analysis," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
    6. T. Antczak, 2018. "Exactness Property of the Exact Absolute Value Penalty Function Method for Solving Convex Nondifferentiable Interval-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 205-224, January.
    7. Fabiola Roxana Villanueva & Valeriano Antunes Oliveira, 2022. "Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 896-923, September.
    8. Shaojie Zhang & Mahdi Hasanipanah & Biao He & Ahmad Safuan A. Rashid & Dmitrii Vladimirovich Ulrikh & Qiancheng Fang, 2022. "An Optimized Clustering Approach to Investigate the Main Features in Predicting the Punching Shear Capacity of Steel Fiber-Reinforced Concrete," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    9. R. Osuna-Gómez & B. Hernández-Jiménez & Y. Chalco-Cano & G. Ruiz-Garzón, 2018. "Different optimum notions for fuzzy functions and optimality conditions associated," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 177-193, June.
    10. Rekha R. Jaichander & Izhar Ahmad & Krishna Kummari & Suliman Al-Homidan, 2022. "Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    11. Agarwal, Deepika & Singh, Pitam & El Sayed, M.A., 2023. "The Karush–Kuhn–Tucker (KKT) optimality conditions for fuzzy-valued fractional optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 861-877.
    12. Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    13. Yating Guo & Guoju Ye & Wei Liu & Dafang Zhao & Savin Treanţǎ, 2021. "Optimality Conditions and Duality for a Class of Generalized Convex Interval-Valued Optimization Problems," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
    14. Tadeusz Antczak, 2023. "Optimality conditions for invex nonsmooth optimization problems with fuzzy objective functions," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 1-21, March.
    15. Lifeng Li, 2023. "Optimality conditions for nonlinear optimization problems with interval-valued objective function in admissible orders," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 247-265, June.
    16. Guo, Yating & Ye, Guoju & Liu, Wei & Zhao, Dafang & Treanţă, Savin, 2022. "On symmetric gH-derivative: Applications to dual interval-valued optimization problems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    17. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    18. Nanxiang Yu & Dong Qiu, 2017. "The Karush-Kuhn-Tucker Optimality Conditions for the Fuzzy Optimization Problems in the Quotient Space of Fuzzy Numbers," Complexity, Hindawi, vol. 2017, pages 1-8, August.
    19. Luhandjula, M.K. & Rangoaga, M.J., 2014. "An approach for solving a fuzzy multiobjective programming problem," European Journal of Operational Research, Elsevier, vol. 232(2), pages 249-255.
    20. Jiang, C. & Zhang, Z.G. & Zhang, Q.F. & Han, X. & Xie, H.C. & Liu, J., 2014. "A new nonlinear interval programming method for uncertain problems with dependent interval variables," European Journal of Operational Research, Elsevier, vol. 238(1), pages 245-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:211:y:2023:i:c:p:430-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.