IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v489y2025ics0096300324006374.html
   My bibliography  Save this article

Fuzzy discrete fractional granular calculus and its application to fractional cobweb models

Author

Listed:
  • Liu, Xuelong
  • Ye, Guoju
  • Liu, Wei
  • Shi, Fangfang

Abstract

This work aims to solve a fuzzy initial value problem for fractional difference equations and to study a class of discrete fractional cobweb models with fuzzy data under the Caputo granular difference operator. Based on relative-distance-measure fuzzy interval arithmetic, we first present several new concepts for fuzzy functions in the field of fuzzy discrete fractional calculus, such as the forward granular difference operator, Riemann-Liouville fractional granular sum, Riemann-Liouville and Caputo granular differences. The composition rules and Leibniz laws used to solve a fuzzy initial value problem for fractional difference equations are also presented. As applications, we obtain the solutions of fuzzy discrete Caputo fractional cobweb models, provide conditions for the convergence of the solution to the equilibrium value, and discuss different cases of how the trajectory of the granular solution converges to the equilibrium value. The developed results are also illustrated through several numerical examples.

Suggested Citation

  • Liu, Xuelong & Ye, Guoju & Liu, Wei & Shi, Fangfang, 2025. "Fuzzy discrete fractional granular calculus and its application to fractional cobweb models," Applied Mathematics and Computation, Elsevier, vol. 489(C).
  • Handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s0096300324006374
    DOI: 10.1016/j.amc.2024.129176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324006374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xin & Ma, Weiyuan & Bao, Xionggai, 2024. "Generalized fractional calculus on time scales based on the generalized Laplace transform," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Shi, Fangfang & Ye, Guoju & Liu, Wei & Zhao, Dafang, 2023. "A class of nonconvex fuzzy optimization problems under granular differentiability concept," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 430-444.
    3. Bohner, Martin & Jonnalagadda, Jagan Mohan, 2022. "Discrete fractional cobweb models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Wu, Guo-Cheng & Baleanu, Dumitru & Luo, Wei-Hua, 2017. "Lyapunov functions for Riemann–Liouville-like fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 228-236.
    5. Guo, Yating & Ye, Guoju & Liu, Wei & Zhao, Dafang & Treanţă, Savin, 2022. "On symmetric gH-derivative: Applications to dual interval-valued optimization problems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burgos, C. & Cortés, J.-C. & Debbouche, A. & Villafuerte, L. & Villanueva, R.-J., 2019. "Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 15-29.
    2. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    3. Liu, Xiang & Wang, Peiguang & Anderson, Douglas R., 2022. "On stability and feedback control of discrete fractional order singular systems with multiple time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. M. Syed Ali & Gani Stamov & Ivanka Stamova & Tarek F. Ibrahim & Arafa A. Dawood & Fathea M. Osman Birkea, 2023. "Global Asymptotic Stability and Synchronization of Fractional-Order Reaction–Diffusion Fuzzy BAM Neural Networks with Distributed Delays via Hybrid Feedback Controllers," Mathematics, MDPI, vol. 11(20), pages 1-24, October.
    5. Yang, Dan & Wang, JinRong & O’Regan, D., 2018. "A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 654-671.
    6. Zhang, Chuang-liang & Huang, Nan-jing & O’Regan, Donal, 2023. "On variational methods for interval-valued functions with some applications," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Zhang, Shuo & Liu, Lu & Xue, Dingyu, 2020. "Nyquist-based stability analysis of non-commensurate fractional-order delay systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Du, Feifei & Jia, Baoguo, 2020. "Finite time stability of fractional delay difference systems: A discrete delayed Mittag-Leffler matrix function approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Mo, Lipo & Yuan, Xiaolin & Yu, Yongguang, 2021. "Containment control for multi-agent systems with fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    10. Zhao, Mingfang & Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun, 2023. "Quasi-synchronization of discrete-time fractional-order quaternion-valued memristive neural networks with time delays and uncertain parameters," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    11. Liu, Xianggang & Ma, Li, 2020. "Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    12. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Raja, Muhammad Junaid Ali Asif & Shu, Chi-Min, 2025. "Design of fractional innate immune response to nonlinear Parkinson's disease model with therapeutic intervention: Intelligent machine predictive exogenous networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    13. Wang, Yupin & Li, Xiaodi & Wang, Da & Liu, Shutang, 2022. "A brief note on fractal dynamics of fractional Mandelbrot sets," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    14. Liu, Lu & Xue, Dingyu & Zhang, Shuo, 2019. "Closed-loop time response analysis of irrational fractional-order systems with numerical Laplace transform technique," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 133-152.
    15. Yao, Yu & Wu, Li-Bing, 2022. "Backstepping control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    16. Dassios, Ioannis K. & Baleanu, Dumitru I., 2018. "Caputo and related fractional derivatives in singular systems," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 591-606.
    17. Yu, Xiangnan & Zhang, Yong & Sun, HongGuang & Zheng, Chunmiao, 2018. "Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 306-312.
    18. Xin, Baogui & Peng, Wei & Kwon, Yekyung, 2020. "A discrete fractional-order Cournot duopoly game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    19. Savin Treanţă & Tareq Saeed, 2023. "On Weak Variational Control Inequalities via Interval Analysis," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
    20. Yuan, Xiaolin & Mo, Lipo & Yu, Yongguang & Ren, Guojian, 2021. "Containment control of fractional discrete-time multi-agent systems with nonconvex constraints," Applied Mathematics and Computation, Elsevier, vol. 409(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s0096300324006374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.