IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v101y2025i3d10.1007_s00186-025-00897-0.html
   My bibliography  Save this article

Stability and well-posedness for parametric quasivariational inequality problem

Author

Listed:
  • Monika Mehta

    (University of Delhi)

  • Guneet Bhatia

    (University of Delhi)

  • Ruchi Kaur

    (University of Delhi)

Abstract

In this paper, we perform a general analysis of stability and well-posedness for a parametric quasivariational inequality problem. Various sufficient conditions ensuring stability, in terms of semicontinuity and closedness of the parametric solution set map are established. Metric characterizations of Levitin–Polyak (LP) well-posedness via approximate solutions sets are also derived. A key result characterizing LP well-posedness in terms of the upper semicontinuity of the approximate solution set has been proved.

Suggested Citation

  • Monika Mehta & Guneet Bhatia & Ruchi Kaur, 2025. "Stability and well-posedness for parametric quasivariational inequality problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 101(3), pages 529-548, June.
  • Handle: RePEc:spr:mathme:v:101:y:2025:i:3:d:10.1007_s00186-025-00897-0
    DOI: 10.1007/s00186-025-00897-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-025-00897-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-025-00897-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. WEI, Jing-Yuan & SMEERS, Yves, 1999. "Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices," LIDAM Reprints CORE 1454, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. M. B. Lignola, 2006. "Well-Posedness and L-Well-Posedness for Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 128(1), pages 119-138, January.
    3. Laura Scrimali, 2008. "The financial equilibrium problem with implicit budget constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 191-203, June.
    4. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    5. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    6. Wei Jing-Yuan & Yves Smeers, 1999. "Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices," Operations Research, INFORMS, vol. 47(1), pages 102-112, February.
    7. Bliemer, Michiel C. J. & Bovy, Piet H. L., 2003. "Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 501-519, July.
    8. Stella Dafermos, 1988. "Sensitivity Analysis in Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 13(3), pages 421-434, August.
    9. D. Chan & J. S. Pang, 1982. "The Generalized Quasi-Variational Inequality Problem," Mathematics of Operations Research, INFORMS, vol. 7(2), pages 211-222, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Kanzow & Daniel Steck, 2018. "Augmented Lagrangian and exact penalty methods for quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 69(3), pages 801-824, April.
    2. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    3. Francisco Facchinei & Christian Kanzow & Sebastian Karl & Simone Sagratella, 2015. "The semismooth Newton method for the solution of quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 62(1), pages 85-109, September.
    4. Ciarcià, Carla & Daniele, Patrizia, 2016. "New existence theorems for quasi-variational inequalities and applications to financial models," European Journal of Operational Research, Elsevier, vol. 251(1), pages 288-299.
    5. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    6. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    7. Benjamin F. Hobbs & J. S. Pang, 2007. "Nash-Cournot Equilibria in Electric Power Markets with Piecewise Linear Demand Functions and Joint Constraints," Operations Research, INFORMS, vol. 55(1), pages 113-127, February.
    8. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    9. Jian Yao & Ilan Adler & Shmuel S. Oren, 2008. "Modeling and Computing Two-Settlement Oligopolistic Equilibrium in a Congested Electricity Network," Operations Research, INFORMS, vol. 56(1), pages 34-47, February.
    10. Laura Scrimali, 2012. "Infinite Dimensional Duality Theory Applied to Investment Strategies in Environmental Policy," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 258-277, July.
    11. NESTEROV, Yu. & SCRIMALI, Laura, 2006. "Solving strongly monotone variational and quasi-variational inequalities," LIDAM Discussion Papers CORE 2006107, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Nevena Mijajlović & Ajlan Zajmović & Milojica Jaćimović, 2025. "A Forward–Backward–Forward Algorithm for Quasi-Variational Inequalities in the Moving Set Case," Mathematics, MDPI, vol. 13(12), pages 1-15, June.
    13. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    14. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    15. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    16. Desmond Cai & Anish Agarwal & Adam Wierman, 2020. "On the Inefficiency of Forward Markets in Leader–Follower Competition," Operations Research, INFORMS, vol. 68(1), pages 35-52, January.
    17. Igor Konnov, 2021. "Variational Inequality Type Formulations of General Market Equilibrium Problems with Local Information," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 332-355, February.
    18. Derek W. Bunn & Fernando S. Oliveira, 2008. "Modeling the Impact of Market Interventions on the Strategic Evolution of Electricity Markets," Operations Research, INFORMS, vol. 56(5), pages 1116-1130, October.
    19. Masao Fukushima, 2011. "Restricted generalized Nash equilibria and controlled penalty algorithm," Computational Management Science, Springer, vol. 8(3), pages 201-218, August.
    20. M. Castellani & M. Giuli, 2019. "A coercivity condition for nonmonotone quasiequilibria on finite-dimensional spaces," Journal of Global Optimization, Springer, vol. 75(1), pages 163-176, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:101:y:2025:i:3:d:10.1007_s00186-025-00897-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.