IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i12p1956-d1678247.html
   My bibliography  Save this article

A Forward–Backward–Forward Algorithm for Quasi-Variational Inequalities in the Moving Set Case

Author

Listed:
  • Nevena Mijajlović

    (Faculty of Science and Mathematics, University of Montenegro, 81000 Podgorica, Montenegro)

  • Ajlan Zajmović

    (Faculty of Science and Mathematics, University of Montenegro, 81000 Podgorica, Montenegro)

  • Milojica Jaćimović

    (Montenegrin Academy of Sciences and Arts, 81000 Podgorica, Montenegro)

Abstract

This paper addresses the challenge of solving quasi-variational inequalities (QVIs) by developing and analyzing a forward–backward–forward algorithm from a continuous and iterative perspective. QVIs extend classical variational inequalities by allowing the constraint set to depend on the decision variable, a formulation that is particularly useful in modeling various problems. A critical computational challenge in these settings is the expensive nature of projection operations, especially when closed-form solutions are unavailable. To mitigate this, we consider the moving set case and propose a forward–backward–forward algorithm that requires only one projection per iteration. Under the assumption that the operator is strongly monotone, we establish that the continuous trajectories generated by the corresponding dynamical system converge exponentially to the unique solution of the QVI. We extend Tseng’s well-known forward–backward–forward algorithm for variational inequalities by adapting it to the more complex framework of QVIs. We prove that it converges when applied to strongly monotone QVIs and derive its convergence rate. We perform numerical implementations of our proposed algorithm and give numerical comparisons with other related gradient projection algorithms for quasi-variational inequalities in the literature.

Suggested Citation

  • Nevena Mijajlović & Ajlan Zajmović & Milojica Jaćimović, 2025. "A Forward–Backward–Forward Algorithm for Quasi-Variational Inequalities in the Moving Set Case," Mathematics, MDPI, vol. 13(12), pages 1-15, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1956-:d:1678247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/12/1956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/12/1956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chinedu Izuchukwu & Yekini Shehu & Jen-Chih Yao, 2022. "New inertial forward-backward type for variational inequalities with Quasi-monotonicity," Journal of Global Optimization, Springer, vol. 84(2), pages 441-464, October.
    2. Francisco Facchinei & Christian Kanzow & Sebastian Karl & Simone Sagratella, 2015. "The semismooth Newton method for the solution of quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 62(1), pages 85-109, September.
    3. WEI, Jing-Yuan & SMEERS, Yves, 1999. "Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices," LIDAM Reprints CORE 1454, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    5. Wei Jing-Yuan & Yves Smeers, 1999. "Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices," Operations Research, INFORMS, vol. 47(1), pages 102-112, February.
    6. Bliemer, Michiel C. J. & Bovy, Piet H. L., 2003. "Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 501-519, July.
    7. NESTEROV, Yurii & SCRIMALI, Laura, 2011. "Solving strongly monotone variational and quasi-variational inequalities," LIDAM Reprints CORE 2357, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. E. Cavazzuti & M. Pappalardo & M. Passacantando, 2002. "Nash Equilibria, Variational Inequalities, and Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 114(3), pages 491-506, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Kanzow & Daniel Steck, 2018. "Augmented Lagrangian and exact penalty methods for quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 69(3), pages 801-824, April.
    2. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    3. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    4. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    5. Benjamin F. Hobbs & J. S. Pang, 2007. "Nash-Cournot Equilibria in Electric Power Markets with Piecewise Linear Demand Functions and Joint Constraints," Operations Research, INFORMS, vol. 55(1), pages 113-127, February.
    6. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    7. M. Castellani & M. Giuli, 2019. "A coercivity condition for nonmonotone quasiequilibria on finite-dimensional spaces," Journal of Global Optimization, Springer, vol. 75(1), pages 163-176, September.
    8. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    9. Jian Yao & Ilan Adler & Shmuel S. Oren, 2008. "Modeling and Computing Two-Settlement Oligopolistic Equilibrium in a Congested Electricity Network," Operations Research, INFORMS, vol. 56(1), pages 34-47, February.
    10. Francisco Facchinei & Christian Kanzow & Sebastian Karl & Simone Sagratella, 2015. "The semismooth Newton method for the solution of quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 62(1), pages 85-109, September.
    11. Derek W. Bunn & Fernando S. Oliveira, 2008. "Modeling the Impact of Market Interventions on the Strategic Evolution of Electricity Markets," Operations Research, INFORMS, vol. 56(5), pages 1116-1130, October.
    12. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    13. Ciarcià, Carla & Daniele, Patrizia, 2016. "New existence theorems for quasi-variational inequalities and applications to financial models," European Journal of Operational Research, Elsevier, vol. 251(1), pages 288-299.
    14. Steven A. Gabriel & Supat Kiet & Jifang Zhuang, 2005. "A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets," Operations Research, INFORMS, vol. 53(5), pages 799-818, October.
    15. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.
    16. Jianzhong Zhang & Biao Qu & Naihua Xiu, 2010. "Some projection-like methods for the generalized Nash equilibria," Computational Optimization and Applications, Springer, vol. 45(1), pages 89-109, January.
    17. Lise, Wietze & Linderhof, Vincent & Kuik, Onno & Kemfert, Claudia & Ostling, Robert & Heinzow, Thomas, 2006. "A game theoretic model of the Northwestern European electricity market--market power and the environment," Energy Policy, Elsevier, vol. 34(15), pages 2123-2136, October.
    18. Heikki Peura & Derek W. Bunn, 2015. "Dynamic Pricing of Peak Production," Operations Research, INFORMS, vol. 63(6), pages 1262-1279, December.
    19. Petropoulos, Georgios & Willems, Bert, 2020. "Long-term transmission rights and dynamic efficiency," Energy Economics, Elsevier, vol. 88(C).
    20. Rossana Riccardi & Giorgia Oggioni & Elisabetta Allevi & Abdel Lisser, 2023. "Complementarity formulation of games with random payoffs," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1956-:d:1678247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.