IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v30y2024i1d10.1007_s10985-023-09594-8.html
   My bibliography  Save this article

Causal inference with recurrent and competing events

Author

Listed:
  • Matias Janvin

    (École Polytechnique Fédérale de Lausanne)

  • Jessica G. Young

    (Harvard Medical School and Harvard Pilgrim Health Care Institute
    Harvard T.H. Chan School of Public Health
    Harvard T.H. Chan School of Public Health)

  • Pål C. Ryalen

    (University of Oslo)

  • Mats J. Stensrud

    (École Polytechnique Fédérale de Lausanne)

Abstract

Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial.

Suggested Citation

  • Matias Janvin & Jessica G. Young & Pål C. Ryalen & Mats J. Stensrud, 2024. "Causal inference with recurrent and competing events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(1), pages 59-118, January.
  • Handle: RePEc:spr:lifeda:v:30:y:2024:i:1:d:10.1007_s10985-023-09594-8
    DOI: 10.1007/s10985-023-09594-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-023-09594-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-023-09594-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Zheng Wenjing & van der Laan Mark, 2017. "Longitudinal Mediation Analysis with Time-varying Mediators and Exposures, with Application to Survival Outcomes," Journal of Causal Inference, De Gruyter, vol. 5(2), pages 1-24, September.
    3. Debashis Ghosh & D. Y. Lin, 2000. "Nonparametric Analysis of Recurrent Events and Death," Biometrics, The International Biometric Society, vol. 56(2), pages 554-562, June.
    4. Pål C. Ryalen & Mats J. Stensrud & Kjetil Røysland, 2019. "The additive hazard estimator is consistent for continuous-time marginal structural models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 611-638, October.
    5. Pål C Ryalen & Mats J Stensrud & Kjetil Røysland, 2018. "Transforming cumulative hazard estimates," Biometrika, Biometrika Trust, vol. 105(4), pages 905-916.
    6. Joffe Marshall, 2011. "Principal Stratification and Attribution Prohibition: Good Ideas Taken Too Far," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-22, September.
    7. James M. Robins & Dianne M. Finkelstein, 2000. "Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests," Biometrics, The International Biometric Society, vol. 56(3), pages 779-788, September.
    8. Vanessa Didelez, 2019. "Defining causal mediation with a longitudinal mediator and a survival outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 593-610, October.
    9. Per Kragh Andersen & Jules Angst & Henrik Ravn, 2019. "Modeling marginal features in studies of recurrent events in the presence of a terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 681-695, October.
    10. Torben Martinussen & Stijn Vansteelandt & Per Kragh Andersen, 2020. "Subtleties in the interpretation of hazard contrasts," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 833-855, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    2. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    3. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    4. Michael Rosenblum & Nicholas P. Jewell & Mark van der Laan & Stephen Shiboski & Ariane van der Straten & Nancy Padian, 2009. "Analysing direct effects in randomized trials with secondary interventions: an application to human immunodeficiency virus prevention trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 443-465, April.
    5. Marie Skov Breum & Anders Munch & Thomas A. Gerds & Torben Martinussen, 2024. "Estimation of separable direct and indirect effects in a continuous-time illness-death model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(1), pages 143-180, January.
    6. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    7. Cheng Zheng & Lei Liu, 2022. "Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach," Biometrics, The International Biometric Society, vol. 78(3), pages 1233-1243, September.
    8. Dustin M. Long & Michael G. Hudgens, 2013. "Sharpening Bounds on Principal Effects with Covariates," Biometrics, The International Biometric Society, vol. 69(4), pages 812-819, December.
    9. Daniel Commenges, 2019. "Dealing with death when studying disease or physiological marker: the stochastic system approach to causality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 381-405, July.
    10. Richard A. J. Post & Edwin R. van den Heuvel & Hein Putter, 2024. "Bias of the additive hazard model in the presence of causal effect heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 383-403, April.
    11. Richard A. J. Post & Edwin R. den Heuvel & Hein Putter, 2024. "The built-in selection bias of hazard ratios formalized using structural causal models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 404-438, April.
    12. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    13. Tat-Thang Vo & Hilary Davies-Kershaw & Ruth Hackett & Stijn Vansteelandt, 2022. "Longitudinal mediation analysis of time-to-event endpoints in the presence of competing risks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 380-400, July.
    14. Greene Tom & Joffe Marshall & Hu Bo & Li Liang & Boucher Ken, 2013. "The Balanced Survivor Average Causal Effect," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 291-306, May.
    15. Michael R. Elliott & Anna Conlon & Yun Li, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 565-569, September.
    16. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    17. Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
    18. Yanyao Yi & Ting Ye & Menggang Yu & Jun Shao, 2020. "Cox regression with survival‐time‐dependent missing covariate values," Biometrics, The International Biometric Society, vol. 76(2), pages 460-471, June.
    19. Bubb, Ryan & Kaufman, Alex, 2014. "Securitization and moral hazard: Evidence from credit score cutoff rules," Journal of Monetary Economics, Elsevier, vol. 63(C), pages 1-18.
    20. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:30:y:2024:i:1:d:10.1007_s10985-023-09594-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.