IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i4p905-916..html
   My bibliography  Save this article

Transforming cumulative hazard estimates

Author

Listed:
  • Pål C Ryalen
  • Mats J Stensrud
  • Kjetil Røysland

Abstract

SUMMARYTime-to-event outcomes are often evaluated on the hazard scale, but interpreting hazards may be difficult. Recently in the causal inference literature concerns have been raised that hazards actually have a built-in selection bias that prevents simple causal interpretations. This is a problem even in randomized controlled trials, where hazard ratios have become a standard measure of treatment effects. Modelling on the hazard scale is nevertheless convenient, for example to adjust for covariates; using hazards for intermediate calculations may therefore be desirable. In this paper we present a generic method for transforming hazard estimates consistently to other scales at which these built-in selection biases are avoided. The method is based on differential equations and generalizes a well-known relation between the Nelson–Aalen and Kaplan–Meier estimators. Using the martingale central limit theorem, we show that covariances can be estimated consistently for a large class of estimators, thus allowing for rapid calculation of confidence intervals. Hence, given cumulative hazard estimates based on, for example, Aalen’s additive hazard model, we can obtain many other parameters without much more effort. We give several examples and the associated estimators. Coverage and convergence speed are explored via simulations, and the results suggest that reliable estimates can be obtained in real-life scenarios.

Suggested Citation

  • Pål C Ryalen & Mats J Stensrud & Kjetil Røysland, 2018. "Transforming cumulative hazard estimates," Biometrika, Biometrika Trust, vol. 105(4), pages 905-916.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:905-916.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy035
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:905-916.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.