IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v30y2024i2d10.1007_s10985-024-09616-z.html
   My bibliography  Save this article

Bias of the additive hazard model in the presence of causal effect heterogeneity

Author

Listed:
  • Richard A. J. Post

    (Eindhoven University of Technology)

  • Edwin R. van den Heuvel

    (Eindhoven University of Technology)

  • Hein Putter

    (Leiden University Medical Center
    Leiden University)

Abstract

Hazard ratios are prone to selection bias, compromising their use as causal estimands. On the other hand, if Aalen’s additive hazard model applies, the hazard difference has been shown to remain unaffected by the selection of frailty factors over time. Then, in the absence of confounding, observed hazard differences are equal in expectation to the causal hazard differences. However, in the presence of effect (on the hazard) heterogeneity, the observed hazard difference is also affected by selection of survivors. In this work, we formalize how the observed hazard difference (from a randomized controlled trial) evolves by selecting favourable levels of effect modifiers in the exposed group and thus deviates from the causal effect of interest. Such selection may result in a non-linear integrated hazard difference curve even when the individual causal effects are time-invariant. Therefore, a homogeneous time-varying causal additive effect on the hazard cannot be distinguished from a time-invariant but heterogeneous causal effect. We illustrate this causal issue by studying the effect of chemotherapy on the survival time of patients suffering from carcinoma of the oropharynx using data from a clinical trial. The hazard difference can thus not be used as an appropriate measure of the causal effect without making untestable assumptions.

Suggested Citation

  • Richard A. J. Post & Edwin R. van den Heuvel & Hein Putter, 2024. "Bias of the additive hazard model in the presence of causal effect heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 383-403, April.
  • Handle: RePEc:spr:lifeda:v:30:y:2024:i:2:d:10.1007_s10985-024-09616-z
    DOI: 10.1007/s10985-024-09616-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-024-09616-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-024-09616-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pål C Ryalen & Mats J Stensrud & Kjetil Røysland, 2018. "Transforming cumulative hazard estimates," Biometrika, Biometrika Trust, vol. 105(4), pages 905-916.
    2. Torben Martinussen & Stijn Vansteelandt & Per Kragh Andersen, 2020. "Subtleties in the interpretation of hazard contrasts," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 833-855, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matias Janvin & Jessica G. Young & Pål C. Ryalen & Mats J. Stensrud, 2024. "Causal inference with recurrent and competing events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(1), pages 59-118, January.
    2. Richard A. J. Post & Edwin R. den Heuvel & Hein Putter, 2024. "The built-in selection bias of hazard ratios formalized using structural causal models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 404-438, April.
    3. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    4. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    5. Benjamin R. Baer & Robert L. Strawderman & Ashkan Ertefaie, 2023. "Discussion on “Instrumental variable estimation of the causal hazard ratio,” by Linbo Wang, Eric Tchetgen Tchetgen, Torben Martinussen, and Stijn Vansteelandt," Biometrics, The International Biometric Society, vol. 79(2), pages 554-558, June.
    6. Ross L. Prentice, 2022. "On the targets of inference with multivariate failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 546-559, October.
    7. Lu Mao, 2023. "Study design for restricted mean time analysis of recurrent events and death," Biometrics, The International Biometric Society, vol. 79(4), pages 3701-3714, December.
    8. Mats J. Stensrud & Miguel A. Hernán & Eric J Tchetgen Tchetgen & James M. Robins & Vanessa Didelez & Jessica G. Young, 2021. "A generalized theory of separable effects in competing event settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 588-631, October.
    9. Chengyuan Lu & Jelle Goeman & Hein Putter, 2023. "Maximum likelihood estimation in the additive hazards model," Biometrics, The International Biometric Society, vol. 79(3), pages 1646-1656, September.
    10. Tat-Thang Vo & Hilary Davies-Kershaw & Ruth Hackett & Stijn Vansteelandt, 2022. "Longitudinal mediation analysis of time-to-event endpoints in the presence of competing risks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 380-400, July.
    11. Mariam O. Adeleke & Gianluca Baio & Aidan G. O'Keeffe, 2022. "Regression discontinuity designs for time‐to‐event outcomes: An approach using accelerated failure time models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1216-1246, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:30:y:2024:i:2:d:10.1007_s10985-024-09616-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.