IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i2d10.1007_s10957-025-02701-9.html
   My bibliography  Save this article

Quasi-Optimization Problems: Existence, Iterative Algorithms and Well-Posedness

Author

Listed:
  • Shengda Zeng

    (Chongqing Normal University)

  • Qing Nie

    (Chongqing Jiaotong University)

  • Calogero Vetro

    (Department of Mathematics and Computer Science)

Abstract

The aim of this article is to introduce and study a quasi-optimization problem (QOP, for short) on an infinite dimensional Banach space. First, under mild assumptions, we deliver three existence theorems for (QOP) by employing Kluge’s fixed point principle for multivalued operators. Then, several sufficient and necessary conditions for a solution of (QOP) are proved. Furthermore, two iterative algorithms are proposed and the convergence results are obtained. Finally, the well-posedness and generalized well-posedness of (QOP) are introduced and its equivalent metric characteristic is established.

Suggested Citation

  • Shengda Zeng & Qing Nie & Calogero Vetro, 2025. "Quasi-Optimization Problems: Existence, Iterative Algorithms and Well-Posedness," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-21, August.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02701-9
    DOI: 10.1007/s10957-025-02701-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02701-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02701-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akhtar A. Khan & Dumitru Motreanu, 2015. "Existence Theorems for Elliptic and Evolutionary Variational and Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 1136-1161, December.
    2. Yu Han & Nan-jing Huang, 2018. "Existence and Connectedness of Solutions for Generalized Vector Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 65-85, October.
    3. Nishimura, Kazuo & Friedman, James, 1981. "Existence of Nash Equilibrium in n Person Games without Quasi-Concavity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(3), pages 637-648, October.
    4. Didier Aussel & Parin Chaipunya, 2024. "Variational and Quasi-Variational Inequalities Under Local Reproducibility: Solution Concept and Applications," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1531-1563, November.
    5. John Cotrina & Javier Zúñiga, 2019. "Quasi-equilibrium problems with non-self constraint map," Journal of Global Optimization, Springer, vol. 75(1), pages 177-197, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cherchye, Laurens & Demuynck, Thomas & De Rock, Bram, 2013. "The empirical content of Cournot competition," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1552-1581.
    2. Long, Ngo Van & Soubeyran, Antoine, 2001. "Cost Manipulation Games in Oligopoly, with Costs of Manipulating," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(2), pages 505-533, May.
    3. Rabia Nessah & Guoqiang Tian, 2008. "The Existence of Equilibria in Discontinuous and Nonconvex Games," Working Papers 2008-ECO-14, IESEG School of Management, revised Mar 2010.
    4. Rabia Nessah & Guoqiang Tian, 2013. "Existence of Solution of Minimax Inequalities, Equilibria in Games and Fixed Points Without Convexity and Compactness Assumptions," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 75-95, April.
    5. Kockesen, Levent & Ok, Efe A. & Sethi, Rajiv, 2000. "The Strategic Advantage of Negatively Interdependent Preferences," Journal of Economic Theory, Elsevier, vol. 92(2), pages 274-299, June.
    6. Rabia Nessah & Guoqiang Tian, 2016. "On the existence of Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 515-540, March.
    7. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.
    8. Nessah, Rabia & Tian, Guoqiang, 2008. "Existence of Equilibria in Discontinuous Games," MPRA Paper 41206, University Library of Munich, Germany, revised Mar 2010.
    9. Rabia Nessah & Kristiaan Kerstens, 2008. "Characterizations of the Existence of Nash Equilibria with Non-convex Strategy Sets," Working Papers 2008-ECO-13, IESEG School of Management.
    10. Tie-jun Jiang & Dong-ling Cai & Yi-bin Xiao & Stanisław Migórski, 2024. "Time-dependent elliptic quasi-variational-hemivariational inequalities: well-posedness and application," Journal of Global Optimization, Springer, vol. 88(2), pages 509-530, February.
    11. Ewerhart, Christian, 2014. "Cournot games with biconcave demand," Games and Economic Behavior, Elsevier, vol. 85(C), pages 37-47.
    12. John Cotrina & Anton Svensson, 2021. "The finite intersection property for equilibrium problems," Journal of Global Optimization, Springer, vol. 79(4), pages 941-957, April.
    13. Shipra Singh & Aviv Gibali & Simeon Reich, 2024. "Multidimensional Evolution Effects on Non-Cooperative Strategic Games," Mathematics, MDPI, vol. 12(16), pages 1-30, August.
    14. Francesco Ciardiello, 2007. "Convexity on Nash Equilibria without Linear Structure," Quaderni DSEMS 15-2007, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    15. Akhtar A. Khan & Dumitru Motreanu, 2018. "Inverse problems for quasi-variational inequalities," Journal of Global Optimization, Springer, vol. 70(2), pages 401-411, February.
    16. Orestes Bueno & John Cotrina, 2021. "Existence of Projected Solutions for Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 344-362, October.
    17. Van Long, Ngo & Soubeyran, Antoine, 2000. "Existence and uniqueness of Cournot equilibrium: a contraction mapping approach," Economics Letters, Elsevier, vol. 67(3), pages 345-348, June.
    18. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.
    19. Qiuying Li & Sanhua Wang, 2021. "Arcwise Connectedness of the Solution Sets for Generalized Vector Equilibrium Problems," Mathematics, MDPI, vol. 9(20), pages 1-9, October.
    20. Marco Castellani & Massimiliano Giuli & Sara Latini, 2023. "Projected solutions for finite-dimensional quasiequilibrium problems," Computational Management Science, Springer, vol. 20(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02701-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.