IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v205y2025i2d10.1007_s10957-025-02647-y.html
   My bibliography  Save this article

Fully Zeroth-Order Bilevel Programming via Gaussian Smoothing

Author

Listed:
  • Alireza Aghasi

    (Oregon State University)

  • Saeed Ghadimi

    (University of Waterloo)

Abstract

In this paper, we study and analyze zeroth-order stochastic approximation algorithms for solving bilevel problems when neither the upper/lower objective values nor their unbiased gradient estimates are available. In particular, exploiting Stein’s identity, we first use Gaussian smoothing to estimate first- and second-order partial derivatives of functions with two independent block of variables. We then use these estimates in the framework of a stochastic approximation algorithm for solving bilevel optimization problems and establish its non-asymptotic convergence analysis. To the best of our knowledge, this is the first time that sample complexity bounds are established for a fully stochastic zeroth-order bilevel optimization algorithm.

Suggested Citation

  • Alireza Aghasi & Saeed Ghadimi, 2025. "Fully Zeroth-Order Bilevel Programming via Gaussian Smoothing," Journal of Optimization Theory and Applications, Springer, vol. 205(2), pages 1-39, May.
  • Handle: RePEc:spr:joptap:v:205:y:2025:i:2:d:10.1007_s10957-025-02647-y
    DOI: 10.1007/s10957-025-02647-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02647-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02647-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    2. LeBlanc, Larry J. & Boyce, David E., 1986. "A bilevel programming algorithm for exact solution of the network design problem with user-optimal flows," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 259-265, June.
    3. Clegg, Janet & Smith, Mike & Xiang, Yanling & Yarrow, Robert, 2001. "Bilevel programming applied to optimising urban transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 41-70, January.
    4. Yurii NESTEROV & Vladimir SPOKOINY, 2017. "Random gradient-free minimization of convex functions," LIDAM Reprints CORE 2851, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guangmin & Xu, Meng & Grant-Muller, Susan & Gao, Zaihan, 2020. "Combination of tradable credit scheme and link capacity improvement to balance economic growth and environmental management in sustainable-oriented transport development: A bi-objective bi-level progr," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 459-471.
    2. Polyxeni-Margarita Kleniati & Claire Adjiman, 2014. "Branch-and-Sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part I: Theoretical development," Journal of Global Optimization, Springer, vol. 60(3), pages 425-458, November.
    3. Youssef Diouane & Vyacheslav Kungurtsev & Francesco Rinaldi & Damiano Zeffiro, 2024. "Inexact direct-search methods for bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 88(2), pages 469-490, June.
    4. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    5. Puchit Sariddichainunta & Masahiro Inuiguchi, 2017. "Global optimality test for maximin solution of bilevel linear programming with ambiguous lower-level objective function," Annals of Operations Research, Springer, vol. 256(2), pages 285-304, September.
    6. Christine Tawfik & Sabine Limbourg, 2018. "Pricing Problems in Intermodal Freight Transport: Research Overview and Prospects," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    7. Andreas Lanz & Gregor Reich & Ole Wilms, 2022. "Adaptive grids for the estimation of dynamic models," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 179-238, June.
    8. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    9. Lucio Bianco & Massimiliano Caramia & Stefano Giordani & Veronica Piccialli, 2016. "A Game-Theoretic Approach for Regulating Hazmat Transportation," Transportation Science, INFORMS, vol. 50(2), pages 424-438, May.
    10. Xu, Jiuping & Shu, Kejing & Wang, Fengjuan & Yang, Guocan, 2024. "Bi-level multi-objective distribution strategy integrating the permit trading scheme towards coal production capacity layout optimization: Case study from China," Resources Policy, Elsevier, vol. 91(C).
    11. Cerulli, Martina & Serra, Domenico & Sorgente, Carmine & Archetti, Claudia & Ljubić, Ivana, 2023. "Mathematical programming formulations for the Collapsed k-Core Problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 56-72.
    12. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    13. Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    14. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    15. Wei Jiang & Huiqiang Wang & Bingyang Li & Haibin Lv & Qingchuan Meng, 2020. "A multi-user multi-operator computing pricing method for Internet of things based on bi-level optimization," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477199, January.
    16. Lei Fang & Hecheng Li, 2013. "Lower bound of cost efficiency measure in DEA with incomplete price information," Journal of Productivity Analysis, Springer, vol. 40(2), pages 219-226, October.
    17. Vivek Laha & Harsh Narayan Singh, 2023. "On quasidifferentiable mathematical programs with equilibrium constraints," Computational Management Science, Springer, vol. 20(1), pages 1-20, December.
    18. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    19. V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
    20. Hoang Tran & Qiang Du & Guannan Zhang, 2025. "Convergence analysis for a nonlocal gradient descent method via directional Gaussian smoothing," Computational Optimization and Applications, Springer, vol. 90(2), pages 481-513, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:205:y:2025:i:2:d:10.1007_s10957-025-02647-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.