IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v186y2020i3d10.1007_s10957-020-01733-7.html
   My bibliography  Save this article

Mixed Spatial and Temporal Decompositions for Large-Scale Multistage Stochastic Optimization Problems

Author

Listed:
  • Pierre Carpentier

    (UMA, ENSTA Paris, IP Paris)

  • Jean-Philippe Chancelier

    (CERMICS, Ecole des Ponts)

  • Michel Lara

    (CERMICS, Ecole des Ponts)

  • François Pacaud

    (CERMICS, Ecole des Ponts)

Abstract

We consider multistage stochastic optimization problems involving multiple units. Each unit is a (small) control system. Static constraints couple units at each stage. We present a mix of spatial and temporal decompositions to tackle such large scale problems. More precisely, we obtain theoretical bounds and policies by means of two methods, depending on whether the coupling constraints are handled by prices or by resources. We study both centralized and decentralized information structures. We report the results of numerical experiments on the management of urban microgrids. It appears that decomposition methods are much faster and give better results than the standard stochastic dual dynamic programming method, both in terms of bounds and of policy performance.

Suggested Citation

  • Pierre Carpentier & Jean-Philippe Chancelier & Michel Lara & François Pacaud, 2020. "Mixed Spatial and Temporal Decompositions for Large-Scale Multistage Stochastic Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 985-1005, September.
  • Handle: RePEc:spr:joptap:v:186:y:2020:i:3:d:10.1007_s10957-020-01733-7
    DOI: 10.1007/s10957-020-01733-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01733-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01733-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Paul Watson & David Woodruff, 2011. "Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems," Computational Management Science, Springer, vol. 8(4), pages 355-370, November.
    2. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    3. Carpentier, P. & Chancelier, J.-Ph. & Leclère, V. & Pacaud, F., 2018. "Stochastic decomposition applied to large-scale hydro valleys management," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1086-1098.
    4. Löhndorf, Nils & Shapiro, Alexander, 2019. "Modeling time-dependent randomness in stochastic dual dynamic programming," European Journal of Operational Research, Elsevier, vol. 273(2), pages 650-661.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    2. Fan, Yingjie & Schwartz, Frank & Voß, Stefan, 2017. "Flexible supply chain planning based on variable transportation modes," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 654-666.
    3. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    4. Zhicheng Zhu & Yisha Xiang & Bo Zeng, 2021. "Multicomponent Maintenance Optimization: A Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 898-914, July.
    5. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    6. Fan, Yueyue & Huang, Yongxi & Chen, Chien-Wei, 2012. "Multistage Infrastructure System Design: An Integrated Biofuel Supply Chain against Feedstock Seasonality and Uncertainty," Institute of Transportation Studies, Working Paper Series qt9g8413m5, Institute of Transportation Studies, UC Davis.
    7. Can Li & Ignacio E. Grossmann, 2019. "A finite $$\epsilon $$ϵ-convergence algorithm for two-stage stochastic convex nonlinear programs with mixed-binary first and second-stage variables," Journal of Global Optimization, Springer, vol. 75(4), pages 921-947, December.
    8. Fadda, Edoardo & Perboli, Guido & Tadei, Roberto, 2019. "A progressive hedging method for the optimization of social engagement and opportunistic IoT problems," European Journal of Operational Research, Elsevier, vol. 277(2), pages 643-652.
    9. Sushil R. Poudel & Md Abdul Quddus & Mohammad Marufuzzaman & Linkan Bian & Reuben F. Burch V, 2019. "Managing congestion in a multi-modal transportation network under biomass supply uncertainty," Annals of Operations Research, Springer, vol. 273(1), pages 739-781, February.
    10. Serhat Gul & Brian T. Denton & John W. Fowler, 2015. "A Progressive Hedging Approach for Surgery Planning Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 755-772, November.
    11. Poudel, Sushil Raj & Marufuzzaman, Mohammad & Bian, Linkan, 2016. "A hybrid decomposition algorithm for designing a multi-modal transportation network under biomass supply uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 1-25.
    12. Francisco Munoz & Jean-Paul Watson, 2015. "A scalable solution framework for stochastic transmission and generation planning problems," Computational Management Science, Springer, vol. 12(4), pages 491-518, October.
    13. Zhang, Qianzhi & Wang, Zhaoyu & Ma, Shanshan & Arif, Anmar, 2021. "Stochastic pre-event preparation for enhancing resilience of distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Lanza, Giacomo & Crainic, Teodor Gabriel & Rei, Walter & Ricciardi, Nicoletta, 2021. "Scheduled service network design with quality targets and stochastic travel times," European Journal of Operational Research, Elsevier, vol. 288(1), pages 30-46.
    15. Kabli, Mohannad & Quddus, Md Abdul & Nurre, Sarah G. & Marufuzzaman, Mohammad & Usher, John M., 2020. "A stochastic programming approach for electric vehicle charging station expansion plans," International Journal of Production Economics, Elsevier, vol. 220(C).
    16. Ellen Krohn Aasgård & Hans Ivar Skjelbred, 2020. "Progressive hedging for stochastic programs with cross-scenario inequality constraints," Computational Management Science, Springer, vol. 17(1), pages 141-160, January.
    17. Sini Han & Hyeon-Jin Kim & Duehee Lee, 2020. "A Long-Term Evaluation on Transmission Line Expansion Planning with Multistage Stochastic Programming," Energies, MDPI, vol. 13(8), pages 1-18, April.
    18. Çelik, Batuhan & Gul, Serhat & Çelik, Melih, 2023. "A stochastic programming approach to surgery scheduling under parallel processing principle," Omega, Elsevier, vol. 115(C).
    19. Escudero, Laureano F. & Garín, M. Araceli & Monge, Juan F. & Unzueta, Aitziber, 2020. "Some matheuristic algorithms for multistage stochastic optimization models with endogenous uncertainty and risk management," European Journal of Operational Research, Elsevier, vol. 285(3), pages 988-1001.
    20. Schulze, Tim & Grothey, Andreas & McKinnon, Ken, 2017. "A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 247-259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:186:y:2020:i:3:d:10.1007_s10957-020-01733-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.