IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v183y2019i3d10.1007_s10957-019-01581-0.html
   My bibliography  Save this article

Optimal Equivalent Probability Measures under Enlarged Filtrations

Author

Listed:
  • Markus Hess

    (Université Libre de Bruxelles)

Abstract

In a general jump-diffusion Radon–Nikodym setup with stochastic Girsanov processes, we derive optimal equivalent probability measures. Optimality is measured in terms of minimum relative entropy and also by more general divergence concepts. We further provide an anticipative sufficient stochastic minimum principle and derive optimal equivalent probability measures under various enlarged filtration approaches.

Suggested Citation

  • Markus Hess, 2019. "Optimal Equivalent Probability Measures under Enlarged Filtrations," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 813-839, December.
  • Handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01581-0
    DOI: 10.1007/s10957-019-01581-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01581-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01581-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Hess, 2018. "Pricing Temperature Derivatives Under Weather Forecasts," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-34, August.
    2. Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123, April.
    3. Thorsten Rheinlander & Gallus Steiger, 2006. "The minimal entropy martingale measure for general Barndorff-Nielsen/Shephard models," Papers math/0610219, arXiv.org.
    4. Thomas Goll & Ludger Rüschendorf, 2001. "Minimax and minimal distance martingale measures and their relationship to portfolio optimization," Finance and Stochastics, Springer, vol. 5(4), pages 557-581.
    5. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    6. Rheinlander, Thorsten & Steiger, Gallus, 2006. "The minimal entropy martingale measure for general Barndorff-Nielsen/Shephard models," LSE Research Online Documents on Economics 16351, London School of Economics and Political Science, LSE Library.
    7. Giulia Di Nunno & Thilo Meyer-Brandis & Bernt Øksendal & Frank Proske, 2006. "Optimal portfolio for an insider in a market driven by Levy processes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 83-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, December.
    2. Victor Richmond R. Jose & Robert F. Nau & Robert L. Winkler, 2008. "Scoring Rules, Generalized Entropy, and Utility Maximization," Operations Research, INFORMS, vol. 56(5), pages 1146-1157, October.
    3. Tsukasa Fujiwara, 2004. "From the Minimal Entropy Martingale Measures to the Optimal Strategies for the Exponential Utility Maximization: the Case of Geometric Lévy Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(4), pages 367-391, December.
    4. Friedrich Hubalek & Carlo Sgarra, 2006. "Esscher transforms and the minimal entropy martingale measure for exponential Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 125-145.
    5. Owari, Keita & 尾張, 圭太, 2008. "Robust Exponential Hedging and Indifference Valuation," Discussion Papers 2008-09, Graduate School of Economics, Hitotsubashi University.
    6. Anastasia Ellanskaya & Lioudmila Vostrikova, 2013. "Utility maximisation and utility indifference price for exponential semi-martingale models with random factor," Papers 1303.1134, arXiv.org.
    7. Weidong Tian & Daisuke Yoshikawa, 2017. "Analyzing Equilibrium in Incomplete Markets with Model Uncertainty," International Review of Finance, International Review of Finance Ltd., vol. 17(2), pages 235-262, June.
    8. Ivan Peñaloza & Pablo Padilla, 2022. "A Pricing Method in a Constrained Market with Differential Informational Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1055-1100, October.
    9. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    10. Thorsten Rheinländer & Gallus Steiger, 2010. "Utility Indifference Hedging with Exponential Additive Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(2), pages 151-169, June.
    11. Tahir Choulli & Jun Deng & Junfeng Ma, 2012. "How Non-Arbitrage, Viability and Num\'eraire Portfolio are Related," Papers 1211.4598, arXiv.org, revised Jun 2014.
    12. Michail Anthropelos & Nikolaos E. Frangos & Stylianos Z. Xanthopoulos & Athanasios N. Yannacopoulos, 2008. "On contingent claims pricing in incomplete markets: A risk sharing approach," Papers 0809.4781, arXiv.org, revised Feb 2012.
    13. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    14. Jan Bergenthum & Ludger Rüschendorf, 2006. "Comparison of Option Prices in Semimartingale Models," Finance and Stochastics, Springer, vol. 10(2), pages 222-249, April.
    15. Michael Ludkovski & Qunying Shen, 2012. "European Option Pricing with Liquidity Shocks," Papers 1205.1007, arXiv.org.
    16. Hans Buehler & Phillip Murray & Mikko S. Pakkanen & Ben Wood, 2021. "Deep Hedging: Learning Risk-Neutral Implied Volatility Dynamics," Papers 2103.11948, arXiv.org, revised Jul 2021.
    17. Jan Bergenthum & Ludger Rüschendorf, 2006. "Comparison of Option Prices in Semimartingale Models," Finance and Stochastics, Springer, vol. 10(2), pages 222-249, April.
    18. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    19. repec:dau:papers:123456789/5374 is not listed on IDEAS
    20. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.
    21. Tahir Choulli & Jun Deng & Junfeng Ma, 2015. "How non-arbitrage, viability and numéraire portfolio are related," Finance and Stochastics, Springer, vol. 19(4), pages 719-741, October.

    More about this item

    Keywords

    Stochastic optimization problem; Stochastic maximum/minimum principle; Relative entropy; Radon–Nikodym density; Lévy process; Enlarged filtration; Stochastic differential equation;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01581-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.