IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0610219.html
   My bibliography  Save this paper

The minimal entropy martingale measure for general Barndorff-Nielsen/Shephard models

Author

Listed:
  • Thorsten Rheinlander
  • Gallus Steiger

Abstract

We determine the minimal entropy martingale measure for a general class of stochastic volatility models where both price process and volatility process contain jump terms which are correlated. This generalizes previous studies which have treated either the geometric L\'{e}vy case or continuous price processes with an orthogonal volatility process. We proceed by linking the entropy measure to a certain semi-linear integro-PDE for which we prove the existence of a classical solution.

Suggested Citation

  • Thorsten Rheinlander & Gallus Steiger, 2006. "The minimal entropy martingale measure for general Barndorff-Nielsen/Shephard models," Papers math/0610219, arXiv.org.
  • Handle: RePEc:arx:papers:math/0610219
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0610219
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein-Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466.
    2. Tahir Choulli & Christophe Stricker, 2005. "Minimal Entropy-Hellinger Martingale Measure In Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 465-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choulli, Tahir & Vandaele, Nele & Vanmaele, Michèle, 2010. "The Föllmer-Schweizer decomposition: Comparison and description," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 853-872, June.
    2. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.
    3. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0610219. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.