IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v179y2018i2d10.1007_s10957-017-1159-3.html
   My bibliography  Save this article

A Stochastic Maximum Principle for a Markov Regime-Switching Jump-Diffusion Model with Delay and an Application to Finance

Author

Listed:
  • Emel Savku

    (Middle East Technical University)

  • Gerhard-Wilhelm Weber

    (Middle East Technical University)

Abstract

We study a stochastic optimal control problem for a delayed Markov regime-switching jump-diffusion model. We establish necessary and sufficient maximum principles under full and partial information for such a system. We prove the existence–uniqueness theorem for the adjoint equations, which are represented by an anticipated backward stochastic differential equation with jumps and regimes. We illustrate our results by a problem of optimal consumption problem from a cash flow with delay and regimes.

Suggested Citation

  • Emel Savku & Gerhard-Wilhelm Weber, 2018. "A Stochastic Maximum Principle for a Markov Regime-Switching Jump-Diffusion Model with Delay and an Application to Finance," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 696-721, November.
  • Handle: RePEc:spr:joptap:v:179:y:2018:i:2:d:10.1007_s10957-017-1159-3
    DOI: 10.1007/s10957-017-1159-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1159-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1159-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samuel N. Cohen & Robert J. Elliott, 2008. "Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions," Papers 0810.0055, arXiv.org, revised Jan 2010.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jianxin & Zheng, Junhao & Zhang, Tonghua & Hou, Rui & Zhou, Yong-wu, 2022. "Dynamical complexity of pricing and green level for a dyadic supply chain with capital constraint," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 195(C), pages 1-21.
    2. De, Arijit & Choudhary, Alok & Turkay, Metin & Tiwari, Manoj K., 2021. "Bunkering policies for a fuel bunker management problem for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 289(3), pages 927-939.
    3. Soheyl Khalilpourazari & Saman Khalilpourazary & Aybike Özyüksel Çiftçioğlu & Gerhard-Wilhelm Weber, 2021. "Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1621-1647, August.
    4. Feng Zhang, 2022. "Sufficient Maximum Principle for Stochastic Optimal Control Problems with General Delays," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 678-701, February.
    5. Erfan Babaee Tirkolaee & Alireza Goli & Selma Gütmen & Gerhard-Wilhelm Weber & Katarzyna Szwedzka, 2023. "A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms," Annals of Operations Research, Springer, vol. 324(1), pages 189-214, May.
    6. Li, Zhuyue & Zhao, Peixin & Han, Xue, 2022. "Agri-food supply chain network disruption propagation and recovery based on cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    7. Qi, Yue & Liao, Kezhi & Liu, Tongyang & Zhang, Yu, 2022. "Originating multiple-objective portfolio selection by counter-COVID measures and analytically instigating robust optimization by mean-parameterized nondominated paths," Operations Research Perspectives, Elsevier, vol. 9(C).
    8. Masoud Alinezhad & Iraj Mahdavi & Milad Hematian & Erfan Babaee Tirkolaee, 2022. "A fuzzy multi-objective optimization model for sustainable closed-loop supply chain network design in food industries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8779-8806, June.
    9. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    10. Lucia Reis Peixoto Roselli & Leydiana de Sousa Pereira & Anderson Lucas Carneiro de Lima Silva & Adiel Teixeira Almeida & Danielle Costa Morais & Ana Paula Cabral Seixas Costa, 2020. "Neuroscience experiment applied to investigate decision-maker behavior in the tradeoff elicitation procedure," Annals of Operations Research, Springer, vol. 289(1), pages 67-84, June.
    11. Wang, Liang & Jiang, Daqing & Feng, Tao, 2022. "Threshold dynamics in a stochastic chemostat model under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    12. E. Savku & G.-W Weber, 2022. "Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market," Annals of Operations Research, Springer, vol. 312(2), pages 1171-1196, May.
    13. Emel Savku, 2023. "A Stochastic Control Approach for Constrained Stochastic Differential Games with Jumps and Regimes," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    14. Zhao, Linlin & Zhu, Qingyuan & Zhang, Lin, 2021. "Regulation adaptive strategy and bank efficiency: A network slacks-based measure with shared resources," European Journal of Operational Research, Elsevier, vol. 295(1), pages 348-362.
    15. Zhang, Dezhi & Zhang, Fangtao & Liang, Yijing, 2021. "An evolutionary model of the international logistics network based on the Belt and Road perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Menoukeu Pamen, 2017. "Maximum Principles of Markov Regime-Switching Forward–Backward Stochastic Differential Equations with Jumps and Partial Information," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 373-410, November.
    2. Leippold, Markus & Schärer, Steven, 2017. "Discrete-time option pricing with stochastic liquidity," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 1-16.
    3. Akihiro Kaneko, 2023. "Multi-stage Euler-Maruyama methods for backward stochastic differential equations driven by continuous-time Markov chains," Papers 2311.08826, arXiv.org, revised Nov 2023.
    4. Nendel, Max, 2019. "On Nonlinear Expectations and Markov Chains under Model Uncertainty," Center for Mathematical Economics Working Papers 628, Center for Mathematical Economics, Bielefeld University.
    5. Dilip Madan & Martijn Pistorius & Mitja Stadje, 2013. "On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation," Papers 1301.3531, arXiv.org, revised Apr 2017.
    6. Olivier Menoukeu-Pamen & Romuald Hervé Momeya, 2017. "A maximum principle for Markov regime-switching forward–backward stochastic differential games and applications," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 349-388, June.
    7. Dirk Becherer & Martin Buttner & Klebert Kentia, 2016. "On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples," Papers 1607.06644, arXiv.org, revised Nov 2019.
    8. Dela Vega, Engel John C. & Elliott, Robert J., 2022. "Backward stochastic differential equations with regime-switching and sublinear expectations," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 278-298.
    9. Samuel N. Cohen & Lukasz Szpruch, 2011. "On Markovian solutions to Markov Chain BSDEs," Papers 1111.5739, arXiv.org.
    10. René Carmona & Peiqi Wang, 2021. "A Probabilistic Approach to Extended Finite State Mean Field Games," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 471-502, May.
    11. Lu, Wen & Ren, Yong, 2013. "Anticipated backward stochastic differential equations on Markov chains," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1711-1719.
    12. René Carmona & Peiqi Wang, 2021. "Finite-State Contract Theory with a Principal and a Field of Agents," Management Science, INFORMS, vol. 67(8), pages 4725-4741, August.
    13. E. Savku & G.-W Weber, 2022. "Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market," Annals of Operations Research, Springer, vol. 312(2), pages 1171-1196, May.
    14. Max Nendel, 2021. "Markov chains under nonlinear expectation," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 474-507, January.
    15. Confortola, Fulvia & Fuhrman, Marco, 2014. "Backward stochastic differential equations associated to jump Markov processes and applications," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 289-316.
    16. Engel John C. Dela Vega & Robert J. Elliott, 2021. "A stochastic control approach to bid-ask price modelling," Papers 2112.02368, arXiv.org.
    17. Lu, Wen & Ren, Yong & Hu, Lanying, 2015. "Mean-field backward stochastic differential equations in general probability spaces," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 1-11.
    18. Cohen, Samuel N. & Elliott, Robert J., 2010. "A general theory of finite state Backward Stochastic Difference Equations," Stochastic Processes and their Applications, Elsevier, vol. 120(4), pages 442-466, April.
    19. Marcus C. Christiansen, 2021. "Time-dynamic evaluations under non-monotone information generated by marked point processes," Finance and Stochastics, Springer, vol. 25(3), pages 563-596, July.
    20. Zhongyang Sun & Junyi Guo & Xin Zhang, 2018. "Maximum Principle for Markov Regime-Switching Forward–Backward Stochastic Control System with Jumps and Relation to Dynamic Programming," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 319-350, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:179:y:2018:i:2:d:10.1007_s10957-017-1159-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.