IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i4d10.1007_s10845-024-02347-w.html
   My bibliography  Save this article

Ontologies for prognostics and health management of production systems: overview and research challenges

Author

Listed:
  • Chiara Franciosi

    (Université de Lorraine)

  • Yasamin Eslami

    (Ecole Centrale de Nantes)

  • Mario Lezoche

    (Université de Lorraine)

  • Alexandre Voisin

    (Université de Lorraine)

Abstract

Prognostics and Health Management (PHM) approaches aim to intervene in the equipment of production systems before faults occur. To properly implement a PHM system, data-centric steps must be taken, including data acquisition and manipulation, detection of machine states, health assessment, prognosis of future failures, and advisory generation. The data generated by different data sources, such as maintenance management systems, equipment manufacturer manuals, design documentation, and process monitoring and control systems, are fundamental for PHM steps. Discovering and using the knowledge embedded in this data is relevant because, for example, data-driven techniques require knowledge, maintenance data often contain tacit knowledge that can facilitate knowledge transfer and collaboration between maintenance personnel with different levels of experience and expertise, and the knowledge related to the same types of systems could be context-dependent. However, the heterogeneity of data sources, the variety of data types, and the possibility of context-dependent data pose challenges in revealing the real value of data and discovering the useful, yet hidden, patterns embedded in maintenance data that can lead to explicit knowledge. Ontologies can effectively contribute to this issue through the organization of data, semantic annotation, integration, and checking of consistency. Several ontologies contributing to the PHM process have been proposed in the scientific literature. However, to the best of our knowledge, no overview of the available ontologies contributing to the PHM steps of production systems is present in the literature. Therefore, this paper aimed to investigate the ontologies and knowledge graphs proposed in the literature for the PHM of production systems. A systematic analysis and mapping of the literature was performed, and the main information was extracted and discussed according to (i) the type and year of the publication, (ii) the ontological and non-ontological resources adopted for designing the ontology/knowledge graph, (iii) the method adopted for implementing the approach, (iv) the type of application, (v) the step(s) of the PHM process on which the article is focused, and (vi) the type of decisions (strategical, tactical, or operational) to which the ontology/knowledge graph is adopted. Subsequently, the conducted analysis led to the definition of a research agenda in the domain, including the following challenges to address: (1) alignment of the ontologies in the maintenance field with respect to top-level ontologies, (2) connection among the different PHM steps at the operational level, (3) major exploitation of the combination of data-driven AI, ontologies, and reasoning for predictive maintenance, and (4) supporting sustainability-related challenges through the connection between the production system, maintenance system, and product.

Suggested Citation

  • Chiara Franciosi & Yasamin Eslami & Mario Lezoche & Alexandre Voisin, 2025. "Ontologies for prognostics and health management of production systems: overview and research challenges," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2223-2253, April.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02347-w
    DOI: 10.1007/s10845-024-02347-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02347-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02347-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiang Zhou & Ping Yan & Huayi Liu & Yang Xin, 2019. "A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1693-1715, April.
    2. Crespo Marquez, Adolfo & Gupta, Jatinder N.D., 2006. "Contemporary maintenance management: process, framework and supporting pillars," Omega, Elsevier, vol. 34(3), pages 313-326, June.
    3. Gregory W. Vogl & Brian A. Weiss & Moneer Helu, 2019. "A review of diagnostic and prognostic capabilities and best practices for manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 79-95, January.
    4. Lixiao Feng & Guorong Chen & Jun Peng, 2018. "An Ontology-Based Cognitive Model for Faults Diagnosis of Hazardous Chemical Storage Devices," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 12(4), pages 101-114, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
    2. Yiping Gao & Liang Gao & Xinyu Li & Yuwei Zheng, 2020. "A zero-shot learning method for fault diagnosis under unknown working loads," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 899-909, April.
    3. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Hao Li & Shanghua Mi & Qifeng Li & Xiaoyu Wen & Dongping Qiao & Guofu Luo, 2020. "A scheduling optimization method for maintenance, repair and operations service resources of complex products," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1673-1691, October.
    5. Yiwei Wang & Jian Zhou & Lianyu Zheng & Christian Gogu, 2022. "An end-to-end fault diagnostics method based on convolutional neural network for rotating machinery with multiple case studies," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 809-830, March.
    6. Shashi Bhushan Jha & Radu F. Babiceanu & Remzi Seker, 2020. "Formal modeling of cyber-physical resource scheduling in IIoT cloud environments," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1149-1164, June.
    7. Zuo, Tao & Zhang, Kai & Zheng, Qing & Li, Xianxin & Li, Zhixuan & Ding, Guofu & Zhao, Minghang, 2023. "A hybrid attention-based multi-wavelet coefficient fusion method in RUL prognosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Pascual, R. & Godoy, D. & Louit, D.M., 2011. "Throughput centered prioritization of machines in transfer lines," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1396-1401.
    9. Bouvard, K. & Artus, S. & Bérenguer, C. & Cocquempot, V., 2011. "Condition-based dynamic maintenance operations planning & grouping. Application to commercial heavy vehicles," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 601-610.
    10. Joaquín Ordieres-Meré & Tomás Prieto Remón & Jesús Rubio, 2020. "Digitalization: An Opportunity for Contributing to Sustainability From Knowledge Creation," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    11. Sanuri Ishak & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Talal Yusaf, 2021. "Fault Classification System for Switchgear CBM from an Ultrasound Analysis Technique Using Extreme Learning Machine," Energies, MDPI, vol. 14(19), pages 1-21, October.
    12. Leppinen, Jussi & Punkka, Antti & Ekholm, Tommi & Salo, Ahti, 2025. "An optimization model for determining cost-efficient maintenance policies for multi-component systems with economic and structural dependencies," Omega, Elsevier, vol. 130(C).
    13. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    14. Lia Tirabeni & Paola De Bernardi & Canio Forliano & Mattia Franco, 2019. "How Can Organisations and Business Models Lead to a More Sustainable Society? A Framework from a Systematic Review of the Industry 4.0," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    15. Hongquan Gui & Jialan Liu & Chi Ma & Mengyuan Li, 2024. "Industrial-oriented machine learning big data framework for temporal-spatial error prediction and control with DTSMGCN model," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1173-1196, March.
    16. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    17. Barberá, Luis & Crespo, Adolfo & Viveros, Pablo & Stegmaier, Raúl, 2014. "A case study of GAMM (graphical analysis for maintenance management) in the mining industry," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 113-120.
    18. He, Yuanbiao & Qiao, Zijian & Xie, Biaobiao & Ning, Siyuan & Li, Zhecong & Kumar, Anil & Lai, Zhihui, 2024. "Two-stage benefits of internal and external noise to enhance early fault detection of machinery by exciting fractional SR," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    19. Shi, Jiayu & Zhong, Jingshu & Zhang, Yuxuan & Xiao, Bin & Xiao, Lei & Zheng, Yu, 2024. "A dual attention LSTM lightweight model based on exponential smoothing for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Gabriel Eugen Garais, 2012. "Maintenance Processes Evaluation For Distributed Applications," Romanian Economic Business Review, Romanian-American University, vol. 6(2), pages 378-388, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02347-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.