IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i7d10.1007_s10845-020-01724-5.html
   My bibliography  Save this article

A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach

Author

Listed:
  • Konstantinos Mykoniatis

    (Auburn University)

  • Gregory A. Harris

    (Auburn University)

Abstract

Virtual commissioning is a key technology in Industry 4.0 that can address issues faced by engineers during early design phases. The process of virtual commissioning involves the creation of a Digital Twin—a dynamic, virtual representation of a corresponding physical system. The digital twin model can be used for testing and verifying the control system in a simulated virtual environment to achieve rapid set-up and optimization prior to physical commissioning. Additionally, the modular production control systems, can be integrated and tested during or prior to the construction of the physical system. This paper describes the implementation of a digital twin emulator of an automated mechatronic modular production system that is linked with the running programmable logic controllers and allow for exchanging near real-time information with the physical system. The development and deployment of the digital twin emulator involves a novel hybrid simulation- and data-driven modeling approach that combines Discrete Event Simulation and Agent Based Modeling paradigms. The Digital Twin Emulator can support design decisions, test what-if system configurations, verify and validate the actual behavior of the complete system off-line, test realistic reactions, and provide statistics on the system’s performance.

Suggested Citation

  • Konstantinos Mykoniatis & Gregory A. Harris, 2021. "A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1899-1911, October.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:7:d:10.1007_s10845-020-01724-5
    DOI: 10.1007/s10845-020-01724-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01724-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01724-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans-Michael Hanisch & Andrei Lobov & Jose L. Martinez Lastra & Reijo Tuokko & Valeriy Vyatkin, 2006. "Formal validation of intelligent-automated production systems: towards industrial applications," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 8(1/2/3), pages 75-106.
    2. Fei Tao & Fangyuan Sui & Ang Liu & Qinglin Qi & Meng Zhang & Boyang Song & Zirong Guo & Stephen C.-Y. Lu & A. Y. C. Nee, 2019. "Digital twin-driven product design framework," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3935-3953, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Ma & Jiewu Leng & Pai Zheng & Zhuyun Chen & Bo Li & Weihua Li & Qiang Liu & Xin Chen, 2025. "A digital twin-assisted deep transfer learning method towards intelligent thermal error modeling of electric spindles," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1659-1688, March.
    2. Kunyu Wang & Lin Zhang & Zidi Jia & Hongbo Cheng & Han Lu & Jin Cui, 2024. "A framework and method for equipment digital twin dynamic evolution based on IExATCN," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1571-1583, April.
    3. Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
    4. Neto, Anis Assad & Ribeiro da Silva, Elias & Deschamps, Fernando & do Nascimento Junior, Laercio Alves & Pinheiro de Lima, Edson, 2023. "Modeling production disorder: Procedures for digital twins of flexibility-driven manufacturing systems," International Journal of Production Economics, Elsevier, vol. 260(C).
    5. Yuchen Wang & Xinheng Wang & Ang Liu & Junqing Zhang & Jinhua Zhang, 2025. "Ontology of 3D virtual modeling in digital twin: a review, analysis and thinking," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 95-145, January.
    6. Ayman AboElHassan & Soumaya Yacout, 2023. "A digital shadow framework using distributed system concepts," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3579-3598, December.
    7. Jiewu Leng & Zisheng Lin & Zhiqiang Huang & Ruijun Ye & Qiang Liu & Xin Chen, 2024. "Rapid simplification of 3D geometry model of mechanisms in the digital twins-driven manufacturing system design," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2765-2786, August.
    8. Shimin Liu & Pai Zheng & Jinsong Bao, 2024. "Digital Twin-based manufacturing system: a survey based on a novel reference model," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2517-2546, August.
    9. Benno Gerlach & Simon Zarnitz & Benjamin Nitsche & Frank Straube, 2021. "Digital Supply Chain Twins—Conceptual Clarification, Use Cases and Benefits," Logistics, MDPI, vol. 5(4), pages 1-24, December.
    10. Guo Zhou & Kai Zhou & Jing Zhang & Meng Yuan & Xiaohao Wang & Pingfa Feng & Min Zhang & Feng Feng, 2024. "Digital modeling-driven chatter suppression for thin-walled part manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 289-305, January.
    11. Tangbin Xia & He Sun & Yutong Ding & Dongyang Han & Wei Qin & Joachim Seidelmann & Lifeng Xi, 2025. "Digital twin-based real-time energy optimization method for production line considering fault disturbances," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 569-593, January.
    12. Xiangdong Wang & Xiaofeng Hu & Jiafu Wan, 2024. "Digital-twin based real-time resource allocation for hull parts picking and processing," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 613-632, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amelio, Andrea & Giardino-Karlinger, Liliane & Valletti, Tommaso, 2020. "Exclusionary pricing in two-sided markets," International Journal of Industrial Organization, Elsevier, vol. 73(C).
    2. Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
    3. F. H. Abanda & N. Jian & S. Adukpo & V. V. Tuhaise & M. B. Manjia, 2025. "Digital twin for product versus project lifecycles’ development in manufacturing and construction industries," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 801-831, February.
    4. Yimeng Jin & Fei Hu & Jin Qi, 2022. "Multidimensional Characteristics and Construction of Classification Model of Prosumers," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    5. Konstantinos Siassiakos & Stamatia Ilioudi & Tsaktsira Effrosyni & Vasiliki Mitsiou & Dimitris Nanouris, 2020. "Utilization of Blockchain Technology in Greek Public Administration," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 10(4), pages 1-12.
    6. Angenendt, Georg & Merten, Michael & Zurmühlen, Sebastian & Sauer, Dirk Uwe, 2020. "Evaluation of the effects of frequency restoration reserves market participation with photovoltaic battery energy storage systems and power-to-heat coupling," Applied Energy, Elsevier, vol. 260(C).
    7. Maciej Niemir & Beata Mrugalska, 2021. "Basic Product Data in E-Commerce: Specifications and Problems of Data Exchange," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 317-329.
    8. Monahan, Lisa & Espinosa, Jennifer A. & Langenderfer, Jeff & Ortinau, David J., 2023. "Did you hear our brand is hated? The unexpected upside of hate-acknowledging advertising for polarizing brands," Journal of Business Research, Elsevier, vol. 154(C).
    9. Muhammad Hassan & Marcus Svadling & Niclas Björsell, 2024. "Experience from implementing digital twins for maintenance in industrial processes," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 875-884, February.
    10. World Bank, 2020. "Nepal Development Update, July 2020," World Bank Publications - Reports 34178, The World Bank Group.
    11. Lena Ries & Markus Beckmann & Peter Wehnert, 2023. "Sustainable smart product-service systems: a causal logic framework for impact design," Journal of Business Economics, Springer, vol. 93(4), pages 667-706, May.
    12. Sohaib S. Hassan & Konrad Meisner & Kevin Krause & Levan Bzhalava & Petra Moog, 2024. "Is digitalization a source of innovation? Exploring the role of digital diffusion in SME innovation performance," Small Business Economics, Springer, vol. 62(4), pages 1469-1491, April.
    13. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Viveiro, José Augusto & Mello, Adriana & Soto, Jorge, 2020. "Polímeros Verdes: tecnologia para promoção do desenvolvimento sustentável," Documentos de Proyectos 45590, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    15. Tianran Han & Jianming Zhao & Wenquan Li, 2020. "Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    16. Mauro Cordella & Felice Alfieri & Javier Sanfelix, 2021. "Reducing the carbon footprint of ICT products through material efficiency strategies: A life cycle analysis of smartphones," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 448-464, April.
    17. Lazzeroni, Paolo & Cirimele, Vincenzo & Canova, Aldo, 2021. "Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Fadi Assad & Emma J. Rushforth & Robert Harrison, 2025. "A component-based design approach for energy flexibility in cyber-physical manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 975-1001, February.
    19. Bazi, Saleh & Filieri, Raffaele & Gorton, Matthew, 2023. "Social media content aesthetic quality and customer engagement: The mediating role of entertainment and impacts on brand love and loyalty," Journal of Business Research, Elsevier, vol. 160(C).
    20. Haneen Allataifeh & Sedigheh Moghavvemi, 2021. "The Individual Dimension of Digital Innovation: The Altered Roles of Innovation Agents and Market Actors," Sustainability, MDPI, vol. 13(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:7:d:10.1007_s10845-020-01724-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.