IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i4d10.1007_s10845-023-02125-0.html
   My bibliography  Save this article

A framework and method for equipment digital twin dynamic evolution based on IExATCN

Author

Listed:
  • Kunyu Wang

    (Beihang University)

  • Lin Zhang

    (Beihang University)

  • Zidi Jia

    (Beihang University)

  • Hongbo Cheng

    (Beihang University)

  • Han Lu

    (Beihang University)

  • Jin Cui

    (Beihang University)

Abstract

Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dynamic evolution framework for black box equipment digital twins. The framework consists of three main parts: data acquisition and processing, an evolution triggering mechanism and an evolution algorithm. A formal description of the dynamic evolution of a black box digital twin is also given. Furthermore, by synthetically considering the computational accuracy and efficiency, we design an incremental external attention temporal convolution network (IExATCN) model to instantiate the proposed framework. Finally, the significance of digital twin dynamic evolution and the effectiveness of the IExATCN is verified by 3D equipment attitude estimation datasets.

Suggested Citation

  • Kunyu Wang & Lin Zhang & Zidi Jia & Hongbo Cheng & Han Lu & Jin Cui, 2024. "A framework and method for equipment digital twin dynamic evolution based on IExATCN," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1571-1583, April.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:4:d:10.1007_s10845-023-02125-0
    DOI: 10.1007/s10845-023-02125-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02125-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02125-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konstantinos Mykoniatis & Gregory A. Harris, 2021. "A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1899-1911, October.
    2. Elisa Negri & Vibhor Pandhare & Laura Cattaneo & Jaskaran Singh & Marco Macchi & Jay Lee, 2021. "Field-synchronized Digital Twin framework for production scheduling with uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1207-1228, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shimin Liu & Pai Zheng & Jinsong Bao, 2024. "Digital Twin-based manufacturing system: a survey based on a novel reference model," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2517-2546, August.
    2. Shuai Ma & Jiewu Leng & Pai Zheng & Zhuyun Chen & Bo Li & Weihua Li & Qiang Liu & Xin Chen, 2025. "A digital twin-assisted deep transfer learning method towards intelligent thermal error modeling of electric spindles," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1659-1688, March.
    3. Neto, Anis Assad & Ribeiro da Silva, Elias & Deschamps, Fernando & do Nascimento Junior, Laercio Alves & Pinheiro de Lima, Edson, 2023. "Modeling production disorder: Procedures for digital twins of flexibility-driven manufacturing systems," International Journal of Production Economics, Elsevier, vol. 260(C).
    4. Ayman AboElHassan & Soumaya Yacout, 2023. "A digital shadow framework using distributed system concepts," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3579-3598, December.
    5. Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
    6. Jiewu Leng & Zisheng Lin & Zhiqiang Huang & Ruijun Ye & Qiang Liu & Xin Chen, 2024. "Rapid simplification of 3D geometry model of mechanisms in the digital twins-driven manufacturing system design," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2765-2786, August.
    7. Junli Liu & Deyu Zhang & Zhongpeng Liu & Tianyu Guo & Yanyan Yan, 2024. "Construction of a Digital Twin System and Dynamic Scheduling Simulation Analysis of a Flexible Assembly Workshops with Island Layout," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    8. Tangbin Xia & He Sun & Yutong Ding & Dongyang Han & Wei Qin & Joachim Seidelmann & Lifeng Xi, 2025. "Digital twin-based real-time energy optimization method for production line considering fault disturbances," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 569-593, January.
    9. Yuchen Wang & Xinheng Wang & Ang Liu & Junqing Zhang & Jinhua Zhang, 2025. "Ontology of 3D virtual modeling in digital twin: a review, analysis and thinking," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 95-145, January.
    10. Benno Gerlach & Simon Zarnitz & Benjamin Nitsche & Frank Straube, 2021. "Digital Supply Chain Twins—Conceptual Clarification, Use Cases and Benefits," Logistics, MDPI, vol. 5(4), pages 1-24, December.
    11. Guo Zhou & Kai Zhou & Jing Zhang & Meng Yuan & Xiaohao Wang & Pingfa Feng & Min Zhang & Feng Feng, 2024. "Digital modeling-driven chatter suppression for thin-walled part manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 289-305, January.
    12. Lee, Jongsuk & Chua, Ping Chong & Liu, Bufan & Moon, Seung Ki & Lopez, Manuel, 2025. "A hybrid data-driven optimization and decision-making approach for a digital twin environment: Towards customizing production platforms," International Journal of Production Economics, Elsevier, vol. 279(C).
    13. Xiangdong Wang & Xiaofeng Hu & Jiafu Wan, 2024. "Digital-twin based real-time resource allocation for hull parts picking and processing," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 613-632, February.
    14. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    15. Lim, Kendrik Yan Hong & Dang, Le Van & Chen, Chun-Hsien, 2024. "Incorporating supply and production digital twins to mitigate demand disruptions in multi-echelon networks," International Journal of Production Economics, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:4:d:10.1007_s10845-023-02125-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.