IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i5d10.1007_s10845-020-01605-x.html
   My bibliography  Save this article

An active safety control method of collision avoidance for intelligent connected vehicle based on driving risk perception

Author

Listed:
  • Chuan Sun

    (Tsinghua University
    Tsinghua University
    Huanggang Normal University)

  • Sifa Zheng

    (Tsinghua University
    Tsinghua University)

  • Yulin Ma

    (Tsinghua University)

  • Duanfeng Chu

    (Wuhan University of Technology)

  • Junru Yang

    (Wuhan University of Technology)

  • Yuncheng Zhou

    (China Design Group Co., Ltd.
    Ministry of Transport)

  • Yicheng Li

    (Jiangsu University)

  • Tingxuan Xu

    (The Affiliated High School of SCNU)

Abstract

As the complex driving scenarios bring about an opportunity for application of deep learning in safe driving, artificial intelligence based on deep learning has become a heatedly discussed topic in the field of advanced driving assistance system. This paper focuses on analysing vehicle active safety control of collision avoidance for intelligent connected vehicles (ICVs) in a real driving risk scenario, and driving risk perception is based on the ICV technology. In this way, trajectories of surrounding vehicles can be predicted and tracked in a real-time manner. In this paper, vehicle dynamics based state-space equations conforming to model predictive controllers are set up to primarily explore and identify a safety domain of active collision avoidance. Furthermore, the model predictive controller is also designed and calibrated, thereby implementing the active collision avoidance strategy for vehicles based on the model predictive control method. At last, functional testing is conducted for the proposed active collision avoidance control strategy in a designed complex traffic scenario. The research findings here can effectively improve automatic driving, intelligent transportation efficiency and road traffic safety.

Suggested Citation

  • Chuan Sun & Sifa Zheng & Yulin Ma & Duanfeng Chu & Junru Yang & Yuncheng Zhou & Yicheng Li & Tingxuan Xu, 2021. "An active safety control method of collision avoidance for intelligent connected vehicle based on driving risk perception," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1249-1269, June.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:5:d:10.1007_s10845-020-01605-x
    DOI: 10.1007/s10845-020-01605-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01605-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01605-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erick J. Rodríguez-Seda & Dušan M. Stipanović & Mark W. Spong, 2016. "Guaranteed Collision Avoidance for Autonomous Systems with Acceleration Constraints and Sensing Uncertainties," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 1014-1038, March.
    2. Sullivan-Wiley, Kira A. & Short Gianotti, Anne G., 2017. "Risk Perception in a Multi-Hazard Environment," World Development, Elsevier, vol. 97(C), pages 138-152.
    3. Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
    4. Zhang, Shuo & Xiong, Rui & Sun, Fengchun, 2017. "Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system," Applied Energy, Elsevier, vol. 185(P2), pages 1654-1662.
    5. Duck Bong Kim, 2019. "An approach for composing predictive models from disparate knowledge sources in smart manufacturing environments," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1999-2012, April.
    6. Wang, Jian & Gong, Siyuan & Peeta, Srinivas & Lu, Lili, 2019. "A real-time deployable model predictive control-based cooperative platooning approach for connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 271-301.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    2. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    3. Tiago Afonso & Anabela C. Alves & Paula Carneiro, 2021. "Lean Thinking, Logistic and Ergonomics: Synergetic Triad to Prepare Shop Floor Work Systems to Face Pandemic Situations," International Journal of Global Business and Competitiveness, Springer, vol. 16(1), pages 62-76, December.
    4. Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
    5. Xiaoyu Zhan & Delia Mioara Popescu & Valentin Radu, 2020. "Challenges for Romanian Entrepreneurs in Managing Remote Workers," Book chapters-LUMEN Proceedings, in: Marcin Waldemar STANIEWSKI & Valentina VASILE & Adriana Grigorescu (ed.), International Conference Innovative Business Management & Global Entrepreneurship (IBMAGE 2020), edition 1, volume 14, chapter 49, pages 670-687, Editura Lumen.
    6. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    7. Dong Yu & Weiming Zhang & Jianlin Li & Weilin Yang & Dezhi Xu, 2020. "Disturbance Observer-Based Prescribed Performance Fault-Tolerant Control for a Multi-Area Interconnected Power System with a Hybrid Energy Storage System," Energies, MDPI, vol. 13(5), pages 1-15, March.
    8. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    9. Wang, Jian & Lu, Lili & Peeta, Srinivas, 2022. "Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 88-118.
    10. Rui Wang & Xiangyu Guo & Shisheng Zhong & Gaolei Peng & Lin Wang, 2022. "Decision rule mining for machining method chains based on rough set theory," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 799-807, March.
    11. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    12. Pompeu Casanovas & Louis de Koker & Mustafa Hashmi, 2022. "Law, Socio-Legal Governance, the Internet of Things, and Industry 4.0: A Middle-Out/Inside-Out Approach," J, MDPI, vol. 5(1), pages 1-28, January.
    13. Anna Kwiotkowska & Radosław Wolniak & Bożena Gajdzik & Magdalena Gębczyńska, 2022. "Configurational Paths of Leadership Competency Shortages and 4.0 Leadership Effectiveness: An fs/QCA Study," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    14. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    15. Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
    16. Paulus, David & Meesters, Kenny & Vries, Gerdien de & Walle, Bartel Van de, 2019. "The reciprocity of data integration in disaster risk analysis," Other publications TiSEM 5e5a778f-bda8-4612-b780-b, Tilburg University, School of Economics and Management.
    17. Peerally, Jahan Ara & Santiago, Fernando & De Fuentes, Claudia & Moghavvemi, Sedigheh, 2022. "Towards a firm-level technological capability framework to endorse and actualize the Fourth Industrial Revolution in developing countries," Research Policy, Elsevier, vol. 51(10).
    18. Iñigo Flores Ituarte & Suraj Panicker & Hari P. N. Nagarajan & Eric Coatanea & David W. Rosen, 2023. "Optimisation-driven design to explore and exploit the process–structure–property–performance linkages in digital manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 219-241, January.
    19. Zhang, Hanyu & Du, Lili & Shen, Jinglai, 2022. "Hybrid MPC System for Platoon based Cooperative Lane change Control Using Machine Learning Aided Distributed Optimization," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 104-142.
    20. Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:5:d:10.1007_s10845-020-01605-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.