IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v5y2021i2p24-d541896.html
   My bibliography  Save this article

A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective

Author

Listed:
  • Masoud Zafarzadeh

    (Department of Sustainable Production Development, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden)

  • Magnus Wiktorsson

    (Department of Sustainable Production Development, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden)

  • Jannicke Baalsrud Hauge

    (Department of Sustainable Production Development, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
    BIBA Institute, 28359 Bremen, Germany)

Abstract

A data-driven approach in production logistics is adopted as a response to challenges such as low visibility and system rigidity. One important step for such a transition is to identify the enabling technologies from a value-creating perspective. The existing corpus of literature has discussed the benefits and applications of smart technologies in overall manufacturing or logistics. However, there is limited discussion specifically on a production logistics level, from a systematic perspective. This paper addresses two issues in this respect by conducting a systematic literature review and analyzing 142 articles. First, it covers the gap in literature concerning mapping the application of these smart technologies to specific production logistic activities. Ten groups of technologies were identified and production logistics activities divided into three major categories. A quantitative share assessment of the technologies in production logistics activities was carried out. Second, the ultimate goal of implementing these technologies is to create business value. This is addressed in this research by presenting the “production logistics data lifecycle” and the importance of having a balanced holistic perspective in technology development. The result of this paper is beneficial to build a ground to transit towards a data-driven state by knowing the applications and use cases described in the literature for the identified technologies.

Suggested Citation

  • Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
  • Handle: RePEc:gam:jlogis:v:5:y:2021:i:2:p:24-:d:541896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/5/2/24/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/5/2/24/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingfeng Zhang & Sichao Liu & Yang Liu & Rui Li, 2016. "Smart box-enabled product–service system for cloud logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6693-6706, November.
    2. Mahroof, Kamran, 2019. "A human-centric perspective exploring the readiness towards smart warehousing: The case of a large retail distribution warehouse," International Journal of Information Management, Elsevier, vol. 45(C), pages 176-190.
    3. C.K.M. Lee & Yaqiong Lv & K.K.H. Ng & William Ho & K.L. Choy, 2018. "Design and application of Internet of things-based warehouse management system for smart logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 56(8), pages 2753-2768, April.
    4. Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
    5. Morteza Ghobakhloo, 2020. "Determinants of information and digital technology implementation for smart manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(8), pages 2384-2405, April.
    6. Kim, Jindae & Tang, Kaizhi & Kumara, Soundar & Yee, Shang-Tae & Tew, Jeffrey, 2008. "Value analysis of location-enabled radio-frequency identification information on delivery chain performance," International Journal of Production Economics, Elsevier, vol. 112(1), pages 403-415, March.
    7. Hui Yang & Soundar Kumara & Satish T.S. Bukkapatnam & Fugee Tsung, 2019. "The internet of things for smart manufacturing: A review," IISE Transactions, Taylor & Francis Journals, vol. 51(11), pages 1190-1216, November.
    8. Shancang Li & Li Da Xu & Shanshan Zhao, 2015. "The internet of things: a survey," Information Systems Frontiers, Springer, vol. 17(2), pages 243-259, April.
    9. Ting Qu & Matthias Thürer & Junhao Wang & Zongzhong Wang & Huan Fu & Congdong Li & George Q. Huang, 2017. "System dynamics analysis for an Internet-of-Things-enabled production logistics system," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2622-2649, May.
    10. Gyusun Hwang & Jeongcheol Lee & Jinwoo Park & Tai-Woo Chang, 2017. "Developing performance measurement system for Internet of Things and smart factory environment," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2590-2602, May.
    11. Mariagrazia Dotoli & Alexander Fay & Marek Miśkowicz & Carla Seatzu, 2019. "An overview of current technologies and emerging trends in factory automation," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 5047-5067, August.
    12. Benjamin Nitsche, 2018. "Unravelling the Complexity of Supply Chain Volatility Management," Logistics, MDPI, vol. 2(3), pages 1-26, August.
    13. Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
    14. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    15. Ray Y. Zhong & Chen Xu & Chao Chen & George Q. Huang, 2017. "Big Data Analytics for Physical Internet-based intelligent manufacturing shop floors," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2610-2621, May.
    16. Shirish Jeble & Rameshwar Dubey & Stephen J. Childe & Thanos Papadopoulos & David Roubaud & Anand Prakash, 2018. "Impact of big data and predictive analytics capability on supply chain sustainability," Post-Print hal-02061341, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Nitsche, 2021. "Exploring the Potentials of Automation in Logistics and Supply Chain Management: Paving the Way for Autonomous Supply Chains," Logistics, MDPI, vol. 5(3), pages 1-9, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delgosha, Mohammad Soltani & Hajiheydari, Nastaran & Talafidaryani, Mojtaba, 2022. "Discovering IoT implications in business and management: A computational thematic analysis," Technovation, Elsevier, vol. 118(C).
    2. Núñez-Merino, Miguel & Maqueira-Marín, Juan Manuel & Moyano-Fuentes, José & Castaño-Moraga, Carlos Alberto, 2022. "Industry 4.0 and supply chain. A Systematic Science Mapping analysis," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    3. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Shenle Pan, 2019. "Opportunities of Product-Service System in Physical Internet," Post-Print hal-02155622, HAL.
    5. Kyu Tae Park & Jinho Yang & Sang Do Noh, 2021. "VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 501-544, February.
    6. Asadi, Shahla & Nilashi, Mehrbakhsh & Iranmanesh, Mohammad & Hyun, Sunghyup Sean & Rezvani, Azadeh, 2022. "Effect of internet of things on manufacturing performance: A hybrid multi-criteria decision-making and neuro-fuzzy approach," Technovation, Elsevier, vol. 118(C).
    7. Tan Ching Ng & Sie Yee Lau & Morteza Ghobakhloo & Masood Fathi & Meng Suan Liang, 2022. "The Application of Industry 4.0 Technological Constituents for Sustainable Manufacturing: A Content-Centric Review," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    8. Jang, Hyunmi & Haddoud, Mohamed Yacine & Roh, Saeyeon & Onjewu, Adah-Kole Emmanuel & Choi, Taeeun, 2023. "Implementing smart factory: A fuzzy-set analysis to uncover successful paths," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    9. Elisa Negri & Vibhor Pandhare & Laura Cattaneo & Jaskaran Singh & Marco Macchi & Jay Lee, 2021. "Field-synchronized Digital Twin framework for production scheduling with uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1207-1228, April.
    10. Guoqing Zhang & Yiqin Yang & Guoqing Yang, 2023. "Smart supply chain management in Industry 4.0: the review, research agenda and strategies in North America," Annals of Operations Research, Springer, vol. 322(2), pages 1075-1117, March.
    11. Mingxing Li & Ray Y. Zhong & Ting Qu & George Q. Huang, 2022. "Spatial–temporal out-of-order execution for advanced planning and scheduling in cyber-physical factories," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1355-1372, June.
    12. Yu Sun & Ling Li & Hui Shi & Dazhi Chong, 2020. "The transformation and upgrade of China's manufacturing industry in Industry 4.0 era," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 734-740, July.
    13. Raut, Rakesh D. & Mangla, Sachin Kumar & Narwane, Vaibhav S. & Dora, Manoj & Liu, Mengqi, 2021. "Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    14. Chenxi Yuan & Guoyan Li & Sagar Kamarthi & Xiaoning Jin & Mohsen Moghaddam, 2022. "Trends in intelligent manufacturing research: a keyword co-occurrence network based review," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 425-439, February.
    15. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    16. Wai Sze Yip & Suet To & Hongting Zhou, 2022. "Current status, challenges and opportunities of sustainable ultra-precision manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2193-2205, December.
    17. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    18. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    19. Leonardo de Assis Santos & Leonardo Marques, 2022. "Big data analytics for supply chain risk management: research opportunities at process crossroads," Post-Print hal-03766121, HAL.
    20. Arfi, Wissal Ben & Nasr, Imed Ben & Kondrateva, Galina & Hikkerova, Lubica, 2021. "The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context," Technological Forecasting and Social Change, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:5:y:2021:i:2:p:24-:d:541896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.